Finance For Energy Market Research Centre

The Finance fo Energy Market Research Centre is a joint research project between the Université Paris-Dauphine, the Centre for Research in Economics and Statistics (CREST), the Ecole Polytechnique and the R&D Division of the EDF group.

This research centre is part of  the Chair Dauphine Ecole Polytechnique EDF Credit Agricole CIB  “Finance and Sustainable Development – A Quantitative Approach”. It aims to allow researchers from all academic institutions interested in working with research engineers of  EDF R&D on issues of mathematical economics and quantitative finance long-term energy sector.


New open-source stochastic optimization library

The STochastic OPTimization library (StOpt) aims at providing tools in C++ for solving some stochastic optimization problems encountered in finance or in the industry. A python binding is available for some C++ objects provided permitting to easily solve an optimization problem by regression.

Different methods are available : dynamic programming methods based on Monte Carlo  with regressions (global, local and  sparse regressors), for underlying states following;  some uncontrolled Stochastic Differential Equations  ;  Semi-Lagrangian methods for Hamilton Jacobi Bellman general equations for underlying states following some controlled  Stochastic Differential Equations  and Stochastic Dual Dynamic Programming methods to deal with stochastic stocks management problems in high dimension

Abbaye des Vaux de Cernay – 16-17 juin 2016

L’objectif de ces deux journées était de faire le point sur les travaux conduits au sein de l’IdR FiME, les résultats déjà obtenus et les perspectives de développement de ces travaux. Les travaux était présentés au travers d’ateliers co-animés par les ingénieurs chercheurs d’EDF R&D et les chercheurs académiques, et de quelques exposés magistraux (PL Lions, B Villeneuve, I Ekeland).

 Last publications


On the Robustness of the Snell envelope

Pierre Del Moral, Peng Hu, Nadia Oudjane, Bruno Remillard We analyze the robustness properties of the Snell envelope backward evolution equation for the discrete time optimal stopping problem. We consider a series of approximation schemes, including cut-off type approximations, Euler discretization schemes, interpolation models, quantization tree models, and the Stochastic Mesh method of Broadie-Glasserman....

Nonzero-sum Stochastic Differential Games with Impulse Controls and Applications to Retail Energy Markets

RR-Fime-16-05 Rene Aïd, Matteo Basei, Giorgia Callegaro, Luciano Campi, Tiziano Vargiolu We consider a singular control problem with regime switching that arises in problems of optimal investment decisions of cash-constrained firms. The value function is proved to be the unique viscosity solution of the associated Hamilton-Jacobi-Bellman equation. Moreover, we give regularity properties of the...