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René Aı̈d∗ Matteo Basei† Giorgia Callegaro†

Luciano Campi‡ Tiziano Vargiolu†

May 3, 2016

Abstract

We study the notion of Nash equilibrium in a general nonzero-sum impulse game for two
players. The main mathematical contribution of the paper is a verification theorem which pro-
vides, under some regularity conditions, the system of quasi-variational inequalities identifying
the value functions and the optimal strategies of the two players.

As an application, we propose a model for the competition among retailers in electricity
markets. We first consider a simplified one-player setting, where we obtain a quasi-explicit
expression for the value function and the optimal control. Then, we turn to the two-player
case and we provide a detailed heuristic analysis of the retail impulse game, conducted along
the lines of the verification theorem obtained in the general setting. This allows to identify
reasonable candidates for the intervention and continuation regions of both players and their
strategies.

Keywords: stochastic differential game, impulse control, Nash equilibrium, quasi-variational
inequality, retail electricity market.

1 Introduction

In this article, we study a general two-player nonzero-sum stochastic differential game with im-
pulse controls. More specifically, after setting the general framework, we investigate the notion of
Nash equilibrium and identify the corresponding system of quasi-variational inequalities (QVIs).
Moreover, we propose within this setting a model for competition in retail electricity markets and
give a detailed analysis of its properties in both one-player and two-player cases.

Regarding general nonzero-sum impulse games, we consider a problem where two players can
affect a continuous-time stochastic processX by discrete-time interventions which consist in shifting
X to a new state (when none of the players intervenes, we assume X to diffuse according to a
standard SDE). Each intervention corresponds to a cost for the intervening player and to a gain
for the opponent. The strategy of player i ∈ {1, 2} is determined by a couple ϕi = (Ai, ξi), where
Ai is a fixed subset of Rd and ξi is a continuous function: player i intervenes if and only if the
process X exits from Ai and, when this happens, she shifts the process from state x to state ξi(x).
Once the strategies ϕi = (Ai, ξi), i = 1, 2, and a starting point x have been chosen, a couple of
impulse controls ui(x;ϕ1, ϕ2) = {(τi,k, δi,k)}1≤k≤Mi is uniquely defined: τi,k is the k-th intervention
time of player i and δi,k is the corresponding impulse. Each player aims at maximizing her payoff,
defined as follows: for every x belonging to some fixed subset S ⊆ Rn and every couple of strategies
(ϕ1, ϕ2) we set

J i(x;ϕ1, ϕ2) := Ex
[ ∫ τS

0

e−ρisfi(Xs)ds+
∑

1≤k≤Mi : τi,k<τS

e−ρiτi,kφi
(
X(τi,k)− , δi,k

)
+

∑
1≤k≤Mj : τj,k<τS

e−ρiτj,kψi
(
X(τj,k)− , δj,k

)
+ e−ρiτShi

(
X(τS)−

)
1{τS<+∞}

]
, (1.1)
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where i, j ∈ {1, 2}, i 6= j and τS is the exit time of X from S. The couple (ϕ∗1, ϕ
∗
2) is a Nash

equilibrium if J1(x;ϕ∗1, ϕ
∗
2) ≥ J1(x;ϕ1, ϕ

∗
2) and J2(x;ϕ∗1, ϕ

∗
2) ≥ J2(x;ϕ∗1, ϕ2), for every couple of

strategies ϕ1, ϕ2.
The game just described is connected to the following system of QVIs, where i, j ∈ {1, 2} with

j 6= i and Mi,Hi are suitable intervention operators defined in Section 2.2:

Vi = hi, in ∂S,

MjVj − Vj ≤ 0, in S,

HiVi − Vi = 0, in {MjVj − Vj = 0},
max

{
AVi − ρiVi + fi,MiVi − Vi} = 0, in {MjVj − Vj < 0}.

(1.2)

The main mathematical result of this paper is the Verification Theorem 2.9: if two functions Vi,
with i ∈ {1, 2}, are a solution to (1.2), have polynomial growth and satisfy the regularity condition

Vi ∈ C2(Dj \ ∂Di) ∩ C1(Dj) ∩ C(S), (1.3)

where j ∈ {1, 2} with j 6= i and Dj = {MjVj − Vj < 0}, then they coincide with the value
functions of the game and a characterization of the Nash strategy is possible. We stress here
that even if stochastic differential games have been widely studied in the last decades, the case
of nonzero-sum impulse games has never been considered, to the best of our knowledge, from a
QVI perspective. Indeed, related former works only address zero-sum stopping games [10], the
corresponding nonzero-sum problems [2] (with only two, very recent, explicit examples in [7] and
[9]) and zero-sum impulse games [8]. We notice that the QVI formulated in [8] for zero-sum impulse
games are obtained as a particular case of our framework.1 Only the two papers [5, 6] deal with
some nonzero-sum stochastic differential games with impulse controls using an approach based on
backward stochastic differential equations and the maximum principle.

The second contribution of our paper is an application of the general setting to competition in
retail electricity markets. Since electricity market deregulation started twenty years ago, electricity
retail markets have been mainly studied from the point of view of the regulation: Joskow and Tirole
[11] study the effect of the lack of hourly meters in households on retail competition, while von der
Fehr and Hansen [13] analyse the switching process of consumers in the Norwegian market.

Here, we are interested in the rationale behind the price policy of electricity retailers for which
an illustration is given in Figure 1.1 in the case of the UK electricity markets. Retailers tend to
increase the household price when the wholesale price increases and to decrease the household price
when the wholesale price decreases. Since retailers change their price nearly at the same moment
(moments differ only by a few weeks), one can wonder if these changes are optimal or result in a
non-competitive behaviour. This question is the reason why the British energy regulator launched
an inquiry on energy retailers in 20142.

In this paper, we propose to model the competition between two electricity retailers within the
general setting of nonzero-sum impulse games, where it is rational for the retailers to increase or
decrease their retail prices at discrete moments depending on the evolution of the wholesale price
and of the competitor’s choice.

In our model, we assume that retailers buy the energy on a single wholesale market without
distinguishing the purchases on the forward market from those on the spot market. Moreover, we
suppose that retailers have the same sourcing cost (the price of power on the wholesale market)
but may have different fixed cost (i.e. different amount of commercials). We also suppose, for
tractability reason, that the structure cost of each retailer is quadratic in her respective market
share. Finally, retailers sell electricity to their final consumers at a fixed price (possibly different
for each retailer). Both retailers’ objective is to maximize their total expected discounted profits.

1Notice that, within the subclass of zero-sum impulse games, the results in [8] are more general than ours as they
hold true under much less regularity assumptions, requiring the use of viscosity solutions.

2The headline findings of the assessment were: (...) Possible tacit co-ordination: The assessment has not found
evidence of explicit collusion between suppliers. However, there is evidence of possible tacit coordination reflected in
the timing and size of price announcements and new evidence that prices rise faster when costs rise than they reduce
when costs fall. Although tacit coordination is not a breach of competition law, it reduces competition and worsens
outcomes for consumers. Published on Ofgem website on June 26th, 2014, at the address: www.ofgem.gov.uk/press-
releases/ofgem-refers-energy-market-full-competition-investigation.
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Figure 1.1: Retail electricity bill compared to wholesale price in the UK (source Ofgem). Retail
electricity bill is given by the average bill of a household consuming on average 3.3 MWh per year.

Their instantaneous profits are composed of three parts: sale revenue (market share times retail
price), sourcing cost (market share times wholesale market price), and structure cost. The whole-
sale market price evolution is assumed to follow an arithmetic Brownian motion for the sake of
simplicity. This is also partly justified by the fact that negative spot prices for electricity are more
and more frequent on various national European markets.

A last important feature of our model is that retailers cannot transfer continuously the variations
of their sourcing cost to their clients. Instead, they can only change their prices in discrete time.
Whenever a retailer changes her price, she faces a fixed cost. Indeed, each time a retailer decides
to change her price, she has to advertise it and to inform all her actual clients about that change.
Therefore, the problem naturally formulates as a nonzero-sum stochastic impulse control game.

Under the guidance provided by the verification theorem established in the general setting,
we provide a detailed analysis of Nash equilibria of the retail impulse game. We focus on Nash
equilibria where each retailer keeps her price constant as long as the spread between her price and
the wholesale price belongs to some region in the plane (called non-intervention or continuation
region). We conjecture that the non-intervention region of retailer i consists of a ribbon in the
plane, which is delimited by two curves. When the difference between her retail price and the
wholesale price hits the boundary of the non-intervention region, the optimal intervention policy
consists in instantaneously changing the retail price in order to come back to the interior of this
region. Within this class of Nash equilibria, we obtain a system of algebraic equations that the
parameters characterizing the equilibrium have to satisfy.

The outline of the paper is the following. Section 2 rigorously formulates the general impulse
stochastic games, defines Nash equilibria, provides the associated system of QVIs and the corre-
sponding verification theorem. In Section 3.1 we consider the retail management problem in a
simple one-player framework, while in Section 3.2 we study the two-player model. Finally, Section
4 concludes.

2 Nonzero-sum stochastic impulse games

In this section we consider a general class of two-player nonzero-sum stochastic differential games
with impulse controls: after a rigorous formalization (see Section 2.1), we define a suitable dif-
ferential problem for the value functions of such games (see Section 2.2) and prove a verification
theorem (see Section 2.3).

3



2.1 Formulation of the problem

Let (Ω, F , {Ft}t≥0, P) be a filtered probability space whose filtration satisfies the usual conditions
of right-continuity and P-completeness. Let {Wt}t≥0 be a k-dimensional {Ft}t≥0-adapted Brow-
nian motion and let S be an open subset of Rd. For every t ≥ 0 and y ∈ S we denote by Y t,y a
solution to the problem

dY t,ys = b(Y t,ys )ds+ σ(Y t,ys )dWs, s ≥ t, (2.1)

with initial condition Y t,yt = y and where b : Rd → Rd and σ : Rd → Rd×k are given continuous
functions. We will later provide precise conditions ensuring that the process Y t,y is well-defined.

We consider two players, that will be indexed by i ∈ {1, 2}. Equation (2.1) models the under-
lying process when none of the players intervenes; conversely, if player i intervenes with impulse
δ ∈ Zi, the process is shifted from its current state x to a new state Γi(x, δ), where Γi : Rd×Zi → S
is a continuous function and Zi is a fixed subset of Rli , with li ∈ N. Each intervention corresponds
to a cost for the intervening player and to a gain for the opponent, both depending on the state x
and the impulse δ.

The action of the players is modelled via discrete-time controls: an impulse control for player
i is a sequence

ui = {(τi,k, δi,k)}1≤k≤Mi
, (2.2)

where Mi ∈ N ∪ {∞} denotes the number of interventions of player i, {τi,k}k are non-decreasing
stopping times (the intervention times) and {δi,k}k are Zi-valued Fτi,k -measurable random vari-
ables (the corresponding impulses).

As usual with multiple-control games, we assume that the behaviour of the players, modelled
by impulse controls, is driven by strategies, which are defined as follows.

Definition 2.1. A strategy for player i ∈ {1, 2} is a pair ϕi = (Ai, ξi), where Ai is a fixed open
subset of Rd and ξi is a continuous function from Rd to Zi.

Strategies determine the action of the players in the following sense. Once ϕi = (Ai, ξi),
i ∈ {1, 2}, and a starting point x ∈ S have been chosen, a pair of impulse controls, which we
denote by ui(x;ϕ1, ϕ2), is uniquely defined by the following procedure:

- player i intervenes if and only if the process exits from Ai,
in which case the impulse is given by ξi(y), where y is the state;

- if both the players want to act, player 1 has the priority;
- the game ends when the process exits from S.

(2.3)

In the following definition we provide a rigorous formalization of the controls associated to a pair
of strategies and the corresponding controlled process, which we denote by Xx;ϕ1,ϕ2 . Moreover O
denotes a generic subset of Rd.

Definition 2.2. Let x ∈ S and let ϕi = (Ai, ξi) be a strategy for player i ∈ {1, 2}. Let τ̃0 =

0, x0 = x, X̃0 = Y τ̃0,x0 , αS0 =∞ and consider the conventions inf ∅ =∞ and [∞,∞[= ∅. For every
k ∈ N, k ≥ 1, we define, by induction,

αOk = inf{s > τ̃k−1 : X̃k−1
s /∈ O}, [exit time from O ⊆ Rd]

τ̃k = (αA1

k ∧ α
A2

k ∧ α
S
k )1{τ̃k−1<αSk−1} + τ̃k−11{τ̃k−1=αSk−1}, [intervention time]

mk = 1{αA1
k ≤α

A2
k }

+ 21{αA2
k <α

A1
k }

, [index of the player interv. at τ̃k]

δ̃k = ξmk
(
X̃k−1
τ̃k

)
1{τ̃k<∞}, [impulse]

xk = Γmk
(
X̃k−1
τ̃k

, δ̃k
)
1{τ̃k<∞}, [starting point for the next step]

X̃k = X̃k−1
1[0,τ̃k[ + Y τ̃k,xk1[τ̃k,∞[. [contr. process up to the k-th interv.]

Let k̄ ∈ N ∪ {∞} be the index of the last significant intervention, and let Mi ∈ N ∪ {∞} be the
number of interventions of player i:

k̄ := sup
{
k ∈ N : P(τ̃k = αSk ) < 1 and P(τ̃k =∞) < 1

}
,

Mi :=
∑

1≤k≤k̄ 1{mk=i}(k).
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For i ∈ {1, 2} and 1 ≤ k ≤ Mi, let η(i, k) = min{l ∈ N :
∑

1≤h≤l 1{mh=i} = k} (index of the k-th
intervention of player i) and let

τi,k := τ̃η(i,k), δi,k := δ̃η(i,k). (2.4)

Finally, the controls ui(x;ϕ1, ϕ2), i ∈ {1, 2}, the controlled process Xx;ϕ1,ϕ2 and the exit time from
S are defined by

ui(x;ϕ1, ϕ2) := {(τi,k, δi,k)}1≤k≤Mi
,

Xx;ϕ1,ϕ2 := X̃ k̄,

τx;ϕ1,ϕ2

S = inf{s > 0 : Xx;ϕ1,ϕ2
s /∈ S}.

To shorten the notations, we will simply write X and τS . Notice that player 1 has priority
in the case of contemporary intervention (i.e., if αA1

k = αA2

k ). In the following lemma we give a
rigorous formulation to the properties outlined in (2.3).

Lemma 2.3. Let x ∈ S and let ϕi = (Ai, ξi) be a strategy for player i ∈ {1, 2}.

- The process X admits the following representation (with the convention [∞,∞[=∅):

Xs =

k̄−1∑
k=0

Y τ̃k,xks 1[τ̃k,τ̃k+1[(s) + Y τ̃k̄,xk̄s 1[τ̃k̄,∞[(s), (2.5)

- The process X is right-continuous. More precisely, X is continuous and satisfies Equation
(2.1) in [0,∞[ \ {τi,k : τi,k < ∞}, whereas X is discontinuous in {τi,k : τi,k < ∞}, where we
have

Xτi,k = Γi
(
X(τi,k)− , δi,k

)
, δi,k = ξi

(
X(τi,k)−

)
, X(τi,k)− ∈ ∂Ai. (2.6)

- The process X never exits from the set A1 ∩A2.

Proof. We just prove the first property in (2.6), the other ones being immediate. Let i ∈ {1, 2},
1 ≤ k ≤ Mi with τi,k < ∞ and set σ = η(i, k), with η as in Definition 2.2. By (2.4), (2.5) and
Definition 2.2, we have

Xτi,k = Xτ̃σ = Y τ̃σ,xστ̃σ
= xσ = Γi

(
X̃σ−1
τ̃σ

, δ̃σ
)

= Γi
(
X̃σ−1

(τ̃σ)− , δ̃σ
)

= Γi
(
X(τ̃σ)− , δ̃σ

)
= Γi

(
X(τi,k)− , δi,k

)
,

where in the fifth equality we have used the continuity of the process X̃σ−1 in [τ̃σ−1,∞[ and in the

next-to-last equality we exploited the fact that X̃σ−1 ≡ X in [0, τ̃σ[.

Each player aims at maximizing her payoff, consisting of four discounted terms: a running
payoff, the costs due to her interventions, the gains due to the opponent’s interventions and a
terminal payoff. More precisely, for each i ∈ {1, 2} we consider ρi > 0 (the discount rate) and
continuous functions fi : Rd → R (the running payoff), hi : Rd → R (the terminal payoff) and
φi : Rd × Zi → R, ψi : Rd × Zj → R (the interventions’ costs and gains), where j ∈ {1, 2} with
j 6= i. The payoff of player i is defined as follows.

Definition 2.4. Let x ∈ S, let (ϕ1, ϕ2) be a pair of strategies and let τS be defined as in Definition
2.2. For each i ∈ {1, 2}, provided that the right-hand side exists and is finite, we set

J i(x;ϕ1, ϕ2) := Ex
[ ∫ τS

0

e−ρisfi(Xs)ds+
∑

1≤k≤Mi : τi,k<τS

e−ρiτi,kφi
(
X(τi,k)− , δi,k

)
+

∑
1≤k≤Mj : τj,k<τS

e−ρiτj,kψi
(
X(τj,k)− , δj,k

)
+ e−ρiτShi

(
X(τS)−

)
1{τS<+∞}

]
, (2.7)

where j ∈ {1, 2} with j 6= i and {(τi,k, δi,k)}1≤k≤Mi
is the impulse control of player i associated to

the strategies ϕ1, ϕ2.
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As usual in control theory, the subscript in the expectation denotes conditioning with respect to
the available information (hence, it recalls the starting point). Notice that in the summations above
we do not consider stopping times which equal τS (since the game ends in τS , any intervention is
meaningless).

In order for J i in (2.7) to be well defined, we now introduce the set of admissible strategies in
x ∈ S.

Definition 2.5. Let x∈S and ϕi=(Ai, ξi) be a strategy for player i∈{1,2}. We use the notations
of Definition 2.2 and we say that the pair (ϕ1, ϕ2) is x-admissible if:

1. for every k ∈ N ∪ {0}, the process Y τ̃k,xk exists and is uniquely defined;

2. for i ∈ {1, 2}, the following random variables are in L1(Ω):∫ τS

0

e−ρis|fi|(Xs)ds, e−ρiτS |hi|(X(τS)−),∑
τi,k<τS

e−ρiτi,k |φi|(X(τi,k)− , δi,k),
∑

τi,k<τS

e−ρiτi,k |ψi|(X(τi,k)− , δi,k);
(2.8)

3. for each k ∈ N, the random variable ‖X‖∞ = supt≥0 |Xt| is in Lk(Ω):

Ex[‖X‖k∞] <∞; (2.9)

4. if τi,k = τi,k+1 for some i ∈ {1, 2} and 1 ≤ k ≤Mi, then τi,k = τi,k+1 = τS;

5. if there exists limk→+∞ τi,k =: η for some i ∈ {1, 2}, then η = τS.

We denote by Ax the set of the x-admissible pairs.

Thanks to the first and the second conditions in Definition 2.5, the controls ui(x;ϕ1, ϕ2) and
the payoffs J i(x;ϕ1, ϕ2) are well-defined. The third condition will be used in the proof of the
Verification Theorem 2.9. As for the fourth and the fifth conditions, they prevent each player to
exercise twice at the same time and to accumulate the interventions before τS .

We conclude the section with the definition of Nash equilibria and value functions for our
problem.

Definition 2.6. Given x ∈ S, we say that (ϕ∗1, ϕ
∗
2) ∈ Ax is a Nash equilibrium of the game if

J1(x;ϕ∗1, ϕ
∗
2) ≥ J1(x;ϕ1, ϕ

∗
2), ∀ϕ1 s.t. (ϕ1, ϕ

∗
2) ∈ Ax,

J2(x;ϕ∗1, ϕ
∗
2) ≥ J2(x;ϕ∗1, ϕ2), ∀ϕ2 s.t. (ϕ∗1, ϕ2) ∈ Ax.

Finally, the value functions of the game are defined as follows: if x ∈ S and a Nash equilibrium
(ϕ∗1, ϕ

∗
2) ∈ Ax exists, we set for i ∈ {1, 2}

Vi(x) := J i(x;ϕ∗1, ϕ
∗
2).

2.2 The quasi-variational inequality problem

We now introduce the differential problem satisfied by the value functions of our games: this will
be the key-point of the verification theorem in the next section.

Let us consider an impulse game as in Section 2.1. Assume that the corresponding value
functions V1, V2 are defined for each x ∈ S and that for i ∈ {1, 2} there exists a (unique) function
δi from S to Zi such that

{δi(x)} = arg max
δ∈Zi

{
Vi(Γ

i(x, δ)) + φi(x, δ)
}
, (2.10)

for each x ∈ S. We define the four intervention operators by

MiVi(x) = Vi
(
Γi(x, δi(x))

)
+ φi

(
x, δi(x)

)
,

HiVi(x) = Vi
(
Γj(x, δj(x))

)
+ ψi

(
x, δj(x)

)
,

(2.11)
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for x ∈ S and i, j∈{1, 2}, with i 6=j. Notice that MiVi=maxδ{Vi(Γi(·, δ)) + φi(·, δ)}.
The functions in (2.10) and (2.11) have an immediate and intuitive interpretation. Let x be the

current state of the process; if player i (resp. player j) intervenes with impulse δ, the present value
of the game for player i can be written as Vi(Γ

i(x, δ)) + φi(x, δ) (resp. Vi(Γ
j(x, δ)) + ψi(x, δ)): we

have considered the value in the new state and the intervention cost (resp. gain). Hence, δi(x) in
(2.10) is the impulse that player i would use in case she wants to intervene.

Similarly, MiVi(x) (resp. HiVi(x)) represents the value of the game for player i when player
i (resp. player j 6= i) takes the best immediate action and behaves optimally afterwards. Notice
that it is not always optimal to intervene, so MiVi(x) ≤ Vi(x), for each x ∈ S, and that player i
should intervene (with impulse δi(x), as already seen) if and only if MiVi(x) = Vi(x). Hence, we
have an heuristic formulation for the Nash equilibria, provided that an explicit expression for Vi is
available. The verification theorem will give a rigorous proof to this heuristic argument. We now
characterize the value functions Vi.

Assume V1, V2 ∈ C2(S) (weaker conditions will be given later) and define

AVi = b · ∇Vi +
1

2
tr
(
σσtD2Vi

)
,

where b, σ are as in (2.1), σt denotes the transpose of σ and ∇Vi, D2Vi are the gradient and the
Hessian matrix of Vi, respectively. We are interested in the following quasi-variational inequalities
(QVIs) for V1, V2, where i, j ∈ {1, 2} and i 6= j:

Vi = hi, in ∂S, (2.12a)

MjVj − Vj ≤ 0, in S, (2.12b)

HiVi − Vi = 0, in {MjVj − Vj = 0}, (2.12c)

max
{
AVi − ρiVi + fi,MiVi − Vi} = 0, in {MjVj − Vj < 0}. (2.12d)

Notice that there is a small abuse of notation in (2.12a), as Vi is not defined in ∂S, so that (2.12a)
means limy→x Vi(y) = hi(x), for each x ∈ ∂S.

We now provide some intuition behind conditions (2.12a)-(2.12d). First of all, the terminal
condition is obvious. Moreover, as we already noticed, (2.12b) is a standard condition in impulse
control theory. For 2.12c, if player j intervenes (i.e., MjVj − Vj = 0), by the definition of Nash
equilibrium we expect that player i does not lose anything: this is equivalent to HiVi−Vi = 0. On
the contrary, if player j does not intervene (i.e., MjVj − Vj < 0), then the problem for player i
becomes a classical one-player impulse control one, hence Vi satisfies max

{
AVi−ρiVi+fi,MiVi−

Vi} = 0. In short, the latter condition says that AVi − ρiVi + fi ≤ 0, with equality in case of
non-intervention (i.e., MiVi − Vi < 0).

Remark 2.7. The functions Vi can be unbounded. Indeed, this is the typical case when the penalties
depend on the impulse: when the state diverges to infinity, one player has to pay a bigger and bigger
cost to push the process back to the continuation region. This corresponds to a strictly decreasing
value function (whereas the value of the game is strictly increasing for the competitor, who gains
from the opponent’s intervention). As a comparison, we recall that in one-player impulse problems
the value function is usually bounded from above. Finally, we notice that the operator AVi appears
only in the region {MjVj −Vj < 0}, so that Vi needs to be of class C2 only in such region (indeed,
this assumption can be slightly relaxed, as we will see). This represents a further difference with
the one-player case, where the value function is asked to be twice differentiable almost everywhere
in S, see [12, Thm. 6.2].

2.2.1 A reduction to the zero-sum case

A verification theorem will be provided in the next section. Here, as a preliminary check on the
problem we propose, we show that we are indeed generalizing the system of QVIs provided in [8],
where the zero-sum case is considered. We show that, if we assume

f := f1 = −f2, φ := φ1 = −ψ2, ψ := ψ1 = −φ2, h := h1 = −h2,

Z := Z1 = Z2, Γ := Γ1 = Γ2, V := V1 = −V2,
(2.13)

7



then the problem in (2.12) collapses into the one considered in [8]. To shorten the equations, we
assume ρ1 = ρ2 = 0 (this makes sense since in [8] a finite-horizon problem is considered). First of
all, we define

M̃V (x) := sup
δ∈Z

{
V (Γ(x, δ)) + φ(x, δ)

}
,

H̃V (x) := inf
δ∈Z

{
V (Γ(x, δ)) + ψ(x, δ)

}
,

for each x ∈ S. It is easy to see that, under the conditions in (2.13), we have

M1V1 = M̃V, M2V2 = −H̃V, H1V1 = H̃V, H2V2 = −M̃V,

so that problem (2.12) writes

V = h, in ∂S, (2.14a)

M̃V ≤ V ≤ H̃V, in S, (2.14b)

AV + f ≤ 0, in {V = M̃V }, (2.14c)

AV + f = 0, in {M̃V < V < H̃V }, (2.14d)

AV + f ≥ 0, in {V = H̃V }. (2.14e)

Simple computations, reported below, show that problem (2.14) is equivalent to

V = h, in ∂S, (2.15a)

M̃V − V ≤ 0, in S, (2.15b)

min{max{AV + f,M̃V − V }, H̃V − V } = 0, in S, (2.15c)

which is exactly the problem studied in [8], as anticipated. We conclude this section by proving
the equivalence of (2.14) and (2.15).

Lemma 2.8. Problems (2.14) and (2.15) are equivalent.

Proof. Step 1. We prove that (2.14) implies (2.15). The only property to be proved is (2.15c). We
consider three cases.

First, assume V = M̃V . Since AV +f ≤ 0 and M̃V −V = 0, we have max{AV +f,M̃V −V } =

0, which implies (2.15c) since H̃V − V ≥ 0. Then, assume M̃V < V < H̃V . Since AV + f = 0

and M̃V − V < 0, we have max{AV + f,M̃V − V } = 0, which implies (2.15c) since H̃V − V > 0.

Finally, assume V = H̃V . Since AV +f ≥ 0 and M̃V −V ≤ 0, we have max{AV +f,M̃V −V } ≥ 0,

which implies (2.15c) since H̃V − V = 0.
Step 2. We prove that (2.15) implies (2.14). The only properties to be proved are (2.14c),

(2.14d) and (2.14e). We assume M̃V < H̃V (the case M̃V = H̃V being immediate) and consider
three cases.

First, assume V = M̃V . Since H̃V − V > 0, from (2.15c) it follows that max{AV + f, 0} = 0,

which implies AV + f ≤ 0. Then, assume M̃V < V < H̃V . Since min{max{α, β}, γ} ∈ {α, β, γ}
for every α, β, γ ∈ R, and since M̃V − V < 0 < H̃V − V , from (2.15c) it follows that AV + f = 0.

Finally, assume V = H̃V . From (2.15c) it follows that max{AV + f,M̃V − V } ≥ 0, which implies

AV + f ≥ 0 since M̃V − V < 0.

2.3 A verification theorem

We provide here the main mathematical contribution of this paper, which is a verification theorem
for the problem formalized in Section 2.1.

Theorem 2.9 (Verification theorem). Let all the notations and working assumptions in Section
2.1 be in force and let Vi be a function from S to R, with i ∈ {1, 2}. Assume that (2.10) holds and
set Di :={MiVi − Vi < 0}, with MiVi as in (2.11). Moreover, for i∈{1, 2} assume that:

8



- Vi is a solution to (2.12a)-(2.12d);

- Vi ∈ C2(Dj \ ∂Di) ∩ C1(Dj) ∩ C(S) and it has polynomial growth;

- ∂Di is a Lipschitz surface and Vi has locally bounded derivatives near ∂Di.

Finally, let x ∈ S and assume that (ϕ∗1, ϕ
∗
2) ∈ Ax, where

ϕ∗i = (Di, δi),

with i ∈ {1, 2}, the set Di is as above and the function δi is as in (2.10). Then,

(ϕ∗1, ϕ
∗
2) is a Nash equilibrium and Vi(x) = J i(x;ϕ∗1, ϕ

∗
2) for i ∈ {1, 2}.

Remark 2.10. Basically, we are saying that the Nash strategy is characterized as follows: player i
intervenes if and only if the controlled process exits from the region {MiVi−Vi < 0} (equivalently,
if and only if MiVi(x) = Vi(x), where x is the current state). When this happens, his impulse is
δi(x).

Remark 2.11. In the case of such (candidate) optimal strategies, we notice that the properties in
Lemma 2.3 imply what follows (the notation is heavy, but it will be crucial to understand the proof
of the theorem):

(M1V1 − V1)
(
X
x;ϕ∗

1 ,ϕ2
s

)
< 0, (2.16a)

(M2V2 − V2)
(
X
x;ϕ1,ϕ

∗
2

s

)
< 0, (2.16b)

δ
x;ϕ∗

1 ,ϕ2

1,k = δ1

(
X
x;ϕ∗

1 ,ϕ2(
τ
x;ϕ∗

1 ,ϕ2
1,k

)−), (2.16c)

δ
x;ϕ1,ϕ

∗
2

2,k = δ2

(
X
x;ϕ1,ϕ

∗
2(

τ
x;ϕ1,ϕ

∗
2

2,k

)−), (2.16d)

(M1V1 − V1)

(
X
x;ϕ∗

1 ,ϕ2(
τ
x;ϕ∗

1 ,ϕ2
1,k

)−) = 0, (2.16e)

(M2V2 − V2)

(
X
x;ϕ1,ϕ

∗
2(

τ
x;ϕ1,ϕ

∗
2

2,k

)−) = 0, (2.16f)

for every ϕ1, ϕ2 strategies such that (ϕ1, ϕ
∗
2), (ϕ∗1, ϕ2) ∈ Ax, every s ≥ 0 and every τ

x;ϕ1,ϕ
∗
2

i,k ,

τ
x;ϕ∗

1 ,ϕ2

i,k <∞.

Proof. By Definition 2.6, we have to prove that

Vi(x) = J i(x;ϕ∗1, ϕ
∗
2), V1(x) ≥ J1(x;ϕ1, ϕ

∗
2), V2(x) ≥ J2(x;ϕ∗1, ϕ2),

for every i ∈ {1, 2} and (ϕ1, ϕ2) strategies such that (ϕ1, ϕ
∗
2) ∈ Ax and (ϕ∗1, ϕ2) ∈ Ax. We show

the results for V1 and J1, the arguments for V2 and J2 being symmetric.
Step 1: V1(x) ≥ J1(x;ϕ1, ϕ

∗
2). Let ϕ1 be a strategy for player 1 such that (ϕ1, ϕ

∗
2) ∈ Ax. Here

we will use the following shortened notation:

X = Xx;ϕ1,ϕ
∗
2 , τi,k = τ

x;ϕ1,ϕ
∗
2

i,k , δi,k = δ
x;ϕ1,ϕ

∗
2

i,k .

Thanks to the regularity assumptions and by standard approximation arguments, it is not re-
strictive to assume V1 ∈ C2(D2) ∩ C(S) (see [12, Thm. 3.1]). For each r > 0 and n ∈ N, we
set

τr,n = τS ∧ τr ∧ n,

where τr = inf{s > 0 : Xs /∈ B(0, r)} is the exit time from the ball with radius r. We apply
Itô’s formula to the function (t,Xt) 7→ e−ρ1tV1(Xt), integrate in the interval [0, τr,n] and take the
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conditional expectations (the initial point and the stochastic integral are integrable, so that the
other terms are integrable too by equality): we get

V1(x)=Ex
[
−
∫ τr,n

0

e−ρ1s(AV1−ρ1V1)(Xs)ds−
∑

τ1,k<τr,n

e−ρ1τ1,k
(
V1

(
Xτ1,k

)
−V1

(
X(τ1,k)−

))
−

∑
τ2,k<τr,n

e−ρ1τ2,k
(
V1

(
Xτ2,k

)
− V1

(
X(τ2,k)−

))
+ e−ρ1τr,nV1(Xτr,n)

]
.

(2.17)

We now estimate each term in the right-hand side of (2.17). As for the first term, since (M2V2 −
V2)(Xs) < 0 by (2.16b), from (2.12d) it follows that

(AV1 − ρ1V1)(Xs) ≤ −f1(Xs), (2.18)

for all s ∈ [0, τS ]. Let us now consider the second term: by (2.12b) and the definition of M1V1 in
(2.11), for every stopping time τ1,k < τS we have

V1

(
X(τ1,k)−

)
≥M1V1

(
X(τ1,k)−

)
= sup
δ∈Z1

{
V1

(
Γ1
(
X(τ1,k)− , δ

))
+ φ1

(
X(τ1,k)− , δ

)}
≥ V1

(
Γ1
(
X(τ1,k)− , δ1,k

))
+ φ1

(
X(τ1,k)− , δ1,k

)
= V1

(
Xτ1,k

)
+ φ1

(
X(τ1,k)− , δ1,k

)
. (2.19)

As for the third term, let us consider any stopping time τ2,k < τS . By (2.16f) we have (M2V2 −
V2)
(
X(τ2,k)−

)
= 0; hence, the condition in (2.12c), the definition of H1V1 in (2.11) and the expres-

sion of δ2,k in (2.16d) imply that

V1

(
X(τ2,k)−

)
= H1V1

(
X(τ2,k)−

)
= V1

(
Γ2
(
X(τ2,k)− , δ2

(
X(τ2,k)−)

))
+ ψ1

(
X(τ2,k)− , δ2

(
X(τ2,k)−)

)
= V1

(
Γ2
(
X(τ2,k)− , δ2,k

))
+ ψ1

(
X(τ2,k)− , δ2,k

)
= V1

(
Xτ2,k

)
+ ψ1

(
X(τ2,k)− , δ2,k

)
. (2.20)

By (2.17) and the estimates in (2.18)-(2.20) it follows that

V1(x) ≥ Ex
[ ∫ τr,n

0

e−ρ1sf1(Xs)ds+
∑

τ1,k<τr,n

e−ρ1τ1,kφ1

(
X(τ1,k)− , δ1,k

)
+

∑
τ2,k<τr,n

e−ρ1τ2,kψ1

(
X(τ2,k)− , δ2,k

)
+ e−ρ1τr,nV1(Xτr,n)

]
.

Thanks to the conditions in (2.8), (2.9) and the polynomial growth of V1, we can use the dominated
convergence theorem and pass to the limit, first as r →∞ and then as n→∞. In particular, for
the fourth term we notice that

V1(Xτr,n) ≤ C(1 + |Xτr,n |k) ≤ C(1 + ‖X‖k∞) ∈ L1(Ω), (2.21)

for suitable constants C > 0 and k ∈ N; the corresponding limit immediately follows by the
continuity of V1 in the case τS <∞ and by (2.21) itself in the case τS =∞ (as a direct consequence
of (2.9), we have ‖X‖k∞ <∞ a.s.). Hence, we finally get

V1(x) ≥ Ex
[ ∫ τS

0

e−ρ1sf1(Xs)ds+
∑

τ1,k<τS

e−ρ1τ1,kφ1

(
X(τ1,k)− , δ1,k

)
+

∑
τ2,k<τS

e−ρ1τ2,kψ1

(
X(τ2,k)− , δ2,k

)
+ e−ρ1τSh1(X(τS)−)1{τS<+∞}

]
= J1(x;ϕ1, ϕ

∗
2).

Step 2: V1(x) = J1(x;ϕ∗1, ϕ
∗
2). We argue as in Step 1, but here all the inequalities are equalities

by the properties of ϕ∗1.
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When solving the QVI problem, one deals with functions which are piecewise defined, as it will
be clear in the next sections. Then, the regularity assumptions in the verification theorem corre-
spond to suitable pasting conditions, leading to a system of algebraic equations. If the regularity
conditions are too strong, the system has more equations than parameters, making the application
of the theorem more difficult. Hence, a crucial point when stating a verification theorem is to set
regularity conditions which allow such a system to actually have a solution. In [1, Section 3.3] a
simple example shows that the regularity conditions we impose lead to an algebraic system with
as many equations as parameters, so that a solution exists, at least formally.

Moreover, we observe that, unlike one-player control impulse problems, in our verification the-
orem the candidates are not required to be twice differentiable everywhere. For example, consider
the case of player 1: as in the proof we always consider pairs of strategies in the form (ϕ1, ϕ2), by
(2.16b) the controlled process never exits from D2 = {M2V2 − V2 < 0}, which is then the only
region where the function V1 needs to be (almost everywhere) twice differentiable in order to apply
Itô’s formula.

3 Competition in retail energy markets

We now address the optimization problem of energy retailers who wants to maximize their expected
profits, by increasing or decreasing the price they charge their customers for the consumption of
electricity. In Section 3.1, as a warm-up, we consider a simpler but enlightening one-player version
of the problem. In Section 3.2 we will turn to a two-player competitive market and we will focus
on a nonzero-sum impulse game, that can be embedded in the setting presented in Section 2, so
that results therein will serve us as a guide to perform our analysis.

3.1 The one-player case

The problem we study in this section has a long tradition (see [3]) and it is in particular very similar
to the one in [4] (see also the references therein). Nevertheless, we give all the mathematical details
(most of them in the Appendix) in order to keep this section self-contained. More precisely, the
article [4] solves an optimal control problem of an inventory where the state variable is a mean-
reverting process, the running cost is quadratic in the state variable and the switching costs are
piecewise linear in the impulse size. Our problem could be seen as a limiting case of theirs when
both the proportional switching costs and the mean-reverting part of the state variable tend to
zero. We also notice that the running cost in our model is more general than in [4].

Formulation of the problem. Let us consider a retailer who buys energy (electricity, gas,
gasoline) on the wholesale market and resells it to final consumers. We address the problem of
investigating the retailer’s optimal strategy in setting the final price and we model it as an impulse
stochastic control problem.

As anticipated, the retailer buys the commodity in the wholesale market. We assume that the
continuous-time price of the commodity is modelled by a Brownian motion with drift:

St = s+ µt+ σWt, (3.1)

for t ≥ 0, where S0 = s > 0 and µ ≥ 0, σ > 0 are fixed constants. The standard Brownian motion
W is defined on a probability space (Ω,F ,P), which is equipped with the natural filtration {Ft}t≥0

generated by W itself and made P-complete (hence right-continuous).
Notice that the retailer has no control on the wholesale price. After buying the energy, the

retailer sells it to final consumers. According to the most common contracts in energy markets,
the retailer can change the price only after a written communication to all her customers. Then,
we model the final price by a piecewise-constant process P . More precisely, we consider an initial
price p > 0 and a sequence {τk}k≥1 of non-negative random times, which correspond to the
retailer’s interventions to adjust the price and move P to a new state. If we denote by {δk}k≥1 the
corresponding impulses, i.e., δk = Pτk − P(τk)− , we have

Pt = p+
∑
τk≤t

δk, (3.2)
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for every t ≥ 0. Let us denote by X the difference or spread between the final price and the
wholesale price. In other words, X represents the retailer’s unitary income when selling energy (we
do not consider, for the moment, the operational costs she faces). By (3.1) and (3.2), we have

Xt = Pt − St = x− µt− σWt +
∑
τk≤t

δk, (3.3)

for every t ≥ 0, where we have set x = p− s. We remark that, when the player does not intervene,
the process X satisfies the following stochastic differential equation:

dXt = −µdt− σdWt. (3.4)

We assume that the retailer’s market share at time t ≥ 0 is a function of Xt, which we denote
by Φ = Φ(Xt). In our model, we set

Φ(x) =


1, x ≤ 0,

− 1
∆ (x−∆), 0 < x < ∆,

0, x ≥ ∆,

(3.5)

for every x ∈ R, where ∆ > 0 is a fixed constant. In other words, the market share is a truncated
linear function of Xt with two thresholds: if Xt ≤ 0 (in which case the final price of the retailer is
lower than the wholesale price) all the customers buy energy from the retailer, whereas if Xt ≥ ∆
the retailer has lost all her customers.

At each time t ≥ 0, the retailer’s income from selling the energy is given by XtΦ(Xt), but she
also has to pay an operational cost, which we assume to be a quadratic function of the market
share Φ(Xt). Hence, the instantaneous payoff is given by

R(x) = xΦ(x)− b

2
Φ2(x), (3.6)

where x is the current state of the process and b is a positive real constant. Moreover, there is a
constant penalty c > 0 to be paid when the retailer intervenes to adjust P . Finally, we denote by
ρ > 0 be the discount rate.

To sum up, we consider here the following stochastic impulse control problem.

Definition 3.1. A control is a sequence u = {(τk, δk)}1≤k<M , where M ∈ R∪{+∞}, {τk}1≤k<M
is a non-decreasing non-negative family of stopping times (the intervention times) and {δk}1≤k<M
are real random variables (the corresponding impulses) such that δk is Fτk -measurable for all 1 ≤
k < M . We denote by U the set of admissible controls, that is the set of controls u such that

E
[ ∑

1≤k<M
e−ρτk

]
<∞. (3.7)

For each x ∈ R and u ∈ U , we denote by Xx;u the process defined in (3.3).

Definition 3.2. The function V (value function) is defined, for each x ∈ R, by

V (x) = sup
u∈U

J(x;u),

where, for every u ∈ U

J(x;u) := Ex
[ ∫ ∞

0

e−ρtR(Xx;u
t )dt− c

∑
1≤k<M

e−ρτk
]
, (3.8)

and the function R has been defined in (3.6). If there exists u∗ ∈ U such that V (x) = J(x;u∗), we
say that u∗ is an optimal control in x.

Notice that the functional J in (3.8) is well-defined, as R is bounded and (3.7) holds. To shorten
the notations, we will often omit the dependence on the control and simply write X.

We now list some remarks about the payoff and the penalty of our problem: these properties
will be useful for stating and proving our results.
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• An explicit expression for the running cost R is

R(x) =


x− b/2, if x < 0,

f(x), if 0 ≤ x ≤ ∆,

0, if x > ∆,

for every x ∈ R, where we have set

f(x) = −αx2 + βx− γ, α =
1

∆
+

b

2∆2
, β = 1 +

b

∆
, γ =

b

2
. (3.9)

In particular, we remark that we have R(x) ≥ f(x), for every x ∈ R.

• The function f in (3.9) is a concave parabola:

f(x) = −α(x− xv)2 + yv, (3.10)

where α is as in (3.9) and the vertex v = (xv, yv) is given by:

xv =
∆(∆ + b)

2∆ + b
, yv = f(xv) =

∆2

2(2∆ + b)
. (3.11)

From the retailer’s point of view, Equation (3.10) says that xv is the state which maximizes
the payoff R(x), the optimal income being yv. Notice that the optimal share Φv := Φ(xv) is
given by

Φv = Φ(xv) =
∆

2∆ + b
. (3.12)

In particular, if b = 0 the optimal share is 1/2.

• Moreover, we notice that

f(x) ≥ 0 if and only if x ∈ [xz,∆], where xz =
b∆

2∆ + b
. (3.13)

Equivalently, the payoff R(Xt) is positive if and only if the spread Xt ∈ [xz,∆]. In other
words, if we want the income from the energy sale to be higher than the operational costs,
we need the spread between the wholesale price and the final price to be greater than xz.

• Finally, if we consider xv, yv, xz,Φv as functions of b, we notice that

xv(b) ∈ [∆/2,∆[, xv(0) = ∆/2, xv(+∞) = ∆, x′v > 0,

yv(b) ∈ ]0,∆/4], yv(0) = ∆/4, yv(+∞) = 0, y′v < 0,

xz(b) ∈ ]0,∆[, xz(0) = 0, xz(+∞) = ∆, x′z > 0,

Φv(b) ∈ ]0, 1/2[, Φv(0) = 1/2, Φv(+∞) = 0, Φ′v < 0.

(3.14)

Some intuitive properties of the model are formalized in (3.14): as the operational costs
increase the optimal spread xv increases, the maximal instantaneous income yv decreases,
the region where the payoff is positive gets smaller and the optimal share decreases. In
particular, we remark that Φv ∈]0, 1/2[: for any value of b, it is never optimal to have a
market share greater than 1/2.

Before stating the verification theorem in our one dimensional setting, we introduce the inter-
vention operator M.

Definition 3.3. Let V : R → R with supu∈R V (u) ∈ R. The function MV is defined, for every
x ∈ R, by

MV (x) = sup
δ∈R
{V (x+ δ)− c}. (3.15)

We are now ready to state the verification theorem, which is a classical result in impulse
stochastic control theory providing sufficient conditions for the value function. The following
proposition is a special case of Theorem 6.2 in [12]. Its proof is therefore omitted.
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Proposition 3.4 (Verification Theorem). Let the assumptions and notations of this section
hold. Let V be a function from R to R satisfying the following conditions:

- V is bounded and there exists x∗ ∈ R such that V (x∗) = maxx∈R V (x);

- D = {MV − V < 0} is a finite union of intervals;

- V ∈ C2(R \ ∂D) ∩ C1(R) and the second derivative of V is bounded near ∂D;

- V is a solution to
max{AV − ρV +R,MV − V } = 0, (3.16)

where AV = (σ2/2)V ′′ − µV ′ is the generator associated to Equation (3.4).

Let x ∈ R and let u∗(x) = {(τ∗k (x), δ∗k(x))}1≤k<∞, where the variables (τ∗k , δ
∗
k) (we omit the depen-

dence on x to shorten the notations) are recursively defined by

τ∗k = inf
{
t > τ∗k−1 : (MV − V )

(
X
x;u∗

k
t

)
= 0
}
,

δ∗k = x∗ −Xx;u∗
k

τ∗
k

,

for k ≥ 1, where we have set τ∗0 = δ∗0 = 0 and u∗k(x) = {(τ∗j , δ∗j )}1≤j≤k. Assume that u∗(x) ∈ U .
Then,

u∗(x) is an optimal control in x and V (x) = J(x;u∗(x)).

Practically, when dealing with a control problem, one first guesses the form of the continuation
region and gets a candidate for the value function by solving Equation (3.16). The final step
consists in actually apply the Verification Theorem to such a candidate.

Remark 3.5. If the parameter c is very high, the retailer may loose all her customers without
intervening, as the intervention cost would be higher than the loss she is experiencing. However,
this situation is clearly not practically admissible (if the costs are too big, a retailer does not even
enter the market). So, in order to keep the model close to reality, we will always require the
continuation region to be a subset of ]0,∆[:

D = {MV − V < 0} ⊆ ]0,∆[. (3.17)

As a consequence, when dealing with the continuation region, we will consider as the running cost
of the problem the restriction of the function R|]0,∆[ = f (clearly, we cannot substitute R with f in
(3.16), as such equation holds for each x ∈ R).

The key-stone of Proposition 3.4 is Equation (3.16), which implies

AV − ρV +R = 0, in {MV − V < 0}.

We now provide an explicit solution to such an equation. By (3.17) we can replace R with f in D;
hence, we are interested in solving

Aϕ− ρϕ+ f =
σ2

2
ϕ′′ − µϕ′ − ρϕ+ f = 0. (3.18)

The general solution to (3.18) is given by

ϕA1,A2
(x) = A1e

m1x +A2e
m2x − k2x

2 + k1x− k0, (3.19)

where A1, A2 ∈ R and we have set

m1,2 =
µ±

√
µ2 + 2ρσ2

σ2
,

k2 =
α

ρ
, k1 =

β

ρ
+

2αµ

ρ2
, k0 =

γ

ρ
+
βµ+ ασ2

ρ2
+

2αµ2

ρ3
,

(3.20)
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with α, β, γ as in (3.9). Notice that, when µ = 0, we have

−k2x
2 + k1x− k0 =

f(x)

ρ
− ασ2

ρ2
.

Hence, the polynomial part in (3.19) is, in this case, a concave parabola with vertex in xv, with
xv as in (3.11); as a consequence, by (3.10) we also have the following representation:

ϕA1,A2
(x) = A1e

θx +A2e
−θx − k2(x− xv)2 + k3, (3.21)

where, to shorten the notations, we have set

θ =

√
2ρ

σ2
, k3 =

f(xv)

ρ
− ασ2

ρ2
=
f(xv)

ρ
− 2k2

θ2
. (3.22)

We stress that the representation in (3.21) holds only in the case µ = 0.

The solution in the case µ = 0. We will show that the classical verification theorem (Propo-
sition 3.4 above) can be applied, so that a semi-explicit expression for the value function and the
optimal control is available. First, we build a candidate for the value function, then, we show that
the verification theorem actually applies to such a candidate.

We focus on the following case:
µ = 0, c ≤ c̄, (3.23)

where c̄ will be specified later in Proposition 3.7. Since our goal is to apply Proposition 3.4, we
first try to find a solution to (3.16), in order to get a candidate Ṽ for V .

It is reasonable to assume that the retailer’s continuation region (i.e., when he does not inter-
vene) is in the form D = ]x, x̄[ and it is included in ]0,∆[ (recall Equation (3.17)). As a consequence,
the real axis is heuristically divided into:

R\]x, x̄[ = {MV − V = 0}, where the retailer intervenes,

]x, x̄[ = {MV − V < 0}, where the retailer does not intervene.

Then, the QVI problem (3.16) suggests the following candidate for V :

Ṽ (x) =

{
ϕ(x), if x ∈ ]x, x̄[,

MṼ (x), if x ∈ R\]x, x̄[,

where ϕ is a solution to the equation (recall that ]x, x̄[⊆]0,∆[, where R = f)

Aϕ− ρϕ+ f = 0,

and where the function MṼ (recall Definition 3.15) is given by

MṼ (x) = sup
δ∈R
{Ṽ (x+ δ)− c} = sup

y∈R
{Ṽ (y)} − c.

Heuristically, it is reasonable to assume that the function Ṽ has a unique maximum point x∗, which
belongs to the continuation region ]x, x̄[ (where Ṽ = ϕ):

max
y∈R
{Ṽ (y)}= max

y∈]x,x̄[
{ϕ(y)}=ϕ(x∗), where ϕ′(x∗)=0, ϕ′′(x∗)≤0, x<x∗<x̄.

We recall that an explicit formula for ϕ has been provided before in this section: in particular,
since we are considering the case µ = 0, we can use the formula in (3.21). Moreover, we recall that

the parameters in Ṽ must be chosen so as to satisfy the regularity assumptions of the verification
theorem: Ṽ has to be continuous and differentiable in x, x̄. To sum up, the candidate is as follows:
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Definition 3.6. For every x ∈ R, we set

Ṽ (x) =

{
ϕA1,A2(x), in ]x, x̄[,

ϕA1,A2(x∗)− c, in R\]x, x̄[,

where ϕA1,A2 is as in (3.21) and the five parameters (A1, A2, x, x̄, x
∗) satisfy

0 < x < x∗ < x̄ < ∆, (3.24)

and the following conditions:

ϕ′A1,A2
(x∗) = 0 and ϕ′′A1,A2

(x∗) < 0, (optimality of x∗)

ϕ′A1,A2
(x) = 0, (C1-pasting in x)

ϕ′A1,A2
(x̄) = 0, (C1-pasting in x̄)

ϕA1,A2
(x) = ϕA1,A2

(x∗)− c, (C0-pasting in x)

ϕA1,A2
(x̄) = ϕA1,A2

(x∗)− c. (C0-pasting in x̄)

(3.25)

In order to have a well-posed definition, we first need to prove that a solution to (3.25) actually
exists.

Since the system cannot be solved directly, we try to make some guesses to simplify it. Consider
the structure of the problem: the running cost is symmetric with respect to xv (see the formulas
(3.10) and (3.11)), the penalty is constant, the uncontrolled process is a scaled Brownian motion
(recall that µ = 0). Then, we expect the value function to be symmetric with respect to xv, which
corresponds to the choice A1e

θxv = A2e
−θxv . The same argument suggests to set (x+ x̄)/2 = xv.

Finally, as a symmetry point is always a local maximum or minimum point, we expect x∗ = xv.
In short, our guess is

A1 = Ae−θxv , A2 = Aeθxv , (x+ x̄)/2 = xv, x∗ = xv, (3.26)

with A ∈ R. In particular, we now consider functions in the form

ϕA(x) = Aeθ(x−xv) +Ae−θ(x−xv) − k2(x− xv)2 + k3,

where A ∈ R and the coefficients k2 and k3 have been defined in (3.20) and (3.22).
Indeed, an easy check shows that x∗ = xv is a local maximum for ϕA (so that the first condition

in (3.25) is satisfied) if and only if A > 0. Then, under our guess (3.26), we can equivalently rewrite
the system (3.25) as {

ϕ′A(x̄) = 0,

ϕA(x̄) = ϕA(xv)− c,

with A > 0 and x̄ > xv. Equivalently, we have to solve{
Aθeθ(x̄−xv) −Aθe−θ(x̄−xv) − 2k2(x̄− xv) = 0,

Aeθ(x̄−xv) +Ae−θ(x̄−xv) − k2(x̄− xv)2 − 2A+ c = 0.

In order to simplify the notations, we operate a change of variable and set ȳ = x̄− xv, so that we
have {

Aθeθȳ −Aθe−θȳ − 2k2ȳ = 0, (3.27a)

Aeθȳ +Ae−θȳ − k2ȳ
2 − 2A+ c = 0, (3.27b)

where A > 0 and ȳ > 0. Finally, notice that the order condition (3.24) now reads

ȳ < ∆− xv. (3.28)

So, in order to prove that Ṽ is well-defined it suffices to show that a solution to (3.27a)-(3.27b)-
(3.28) exists and is unique. The proof of the following proposition is in the Appendix.

16



Proposition 3.7. Assume c < c̄, with c̄ = ξ(∆2/(2∆ + b)), where ξ is a suitable function defined

in (A.11). Then, the function Ṽ in Definition 3.6 is well-defined, namely there exists a solution

(A1, A2, x, x̄, x
∗)

to System (3.25), which is given by

A1 = Ae−θxv , A2 = Aeθxv ,

x∗ = xv, x = xv − ȳ, x̄ = xv + ȳ,

where xv is as in (3.11) and (A, ȳ) is the unique solution to (3.27a)-(3.27b)-(3.28).

We conclude this section with an application of the verification theorem in Proposition 3.4,
which yields that the candidate Ṽ defined in the previous section actually corresponds to the value
function. Moreover, we characterize the optimal price management policy: the retailer has to
intervene if and only if the process hits x or x̄ and, when this happens, she has to shift X back to
the state x∗. The proof of the next result is postponed to the Appendix.

Proposition 3.8. Let (3.23) hold and let Ṽ be as in Definition 3.6. For every x ∈ R, an optimal
control for the problem in Definition 3.2 exists and is given by u∗(x) = {(τ∗k , δ∗k)}1≤k<∞, where the
variables (τ∗k , δ

∗
k) are recursively defined by

τ∗k = inf
{
t > τ∗k−1 : X

x;u∗
k

t ∈ {x, x̄}
}
,

δ∗k = x∗ −Xx;u∗
k

τ∗
k

,
(3.29)

for k ≥ 1, where we have set τ∗0 = δ∗0 = 0 and u∗k = {(τ∗j , δ∗j )}1≤j≤k. Moreover, Ṽ coincides with
the value function: for every x ∈ R we have

Ṽ (x) = V (x) = J(x;u∗(x)).

Remark 3.9. For more details and results on the one-player model including the nonzero drift
case (µ 6= 0) as well as the asymptotic analysis of the value function and the optimal strategy as
c→ 0 we refer to [1].

3.2 The two-player case

We now extend the one-player model in Section 3.1 to a competitive two-player energy market
model, getting a nonzero-sum stochastic game with impulse controls, which is a special case of the
general framework in Section 2. After setting the model in Section 3.2.1, we provide in Section
3.2.2 a system of equations to be solved in order to fully determine the value function.

3.2.1 Formulation of the problem

The one-player model in Section 3.1 has the advantage of being mathematically tractable. However,
it does not fully reproduce the fierce competition which characterizes modern deregulated energy
markets: the interaction between opposing retailers is only implicitly considered (the player’s
market share decreases as her price rises). Motivated by this fact, we now modify our model by
introducing a second player.

Hence, we assume that the retail market is made up of two opponent players, indexed by
i ∈ {1, 2}. Similarly to Section 3.1, each retailer buys energy at the wholesale price S, with S as
in (3.1), and resells it to her customers at a final price P i, with P i resembling (3.2):

St = s+ µt+ σWt, P it = pi +
∑
τ ik≤t

δik, (3.30)

for each t ≥ 0, where s is the initial wholesale price, µ and σ are fixed constants, W is a one-
dimensional Brownian motion, pi is the initial retail price and {τ ik, δik}k is the impulse control
corresponding to the retailer’s interventions on the final price, as in Section 3.1. Notice that the
retailers buy the energy from the same provider and that they do not influence the wholesale price.
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In order to have a realistic model, the market share of player i ∈ {1, 2} depends on the price
she asks (as in the one-player case) and on the opponent’s pricing choices as well. In particular, if
the two retailers fix the same final price then both market shares are equal to 50%, whereas a lower
price with respect to the competitor should correspond to an increase in the number of customers.
Let i, j ∈ {1, 2}, with i 6= j, and let ∆ > 0 be a fixed constant. In our model we assume that the
market share of retailer i at time t ≥ 0 is Φ(P it − P

j
t ), where

Φ(x) =


1, x ≤ −∆,

− 1
2∆ (x−∆), −∆ < x < ∆,

0, x ≥ ∆,

(3.31)

for every x ∈ R. In other words, the market share of player i is a truncated linear function of
P it −P

j
t , with two thresholds: if P it ≤ P

j
t −∆ the retailer has the monopoly of the market, whereas

if P it ≥ P
j
t + ∆ the retailer has lost all his customers.

Remark 3.10. Notice that the market share function Φ in (3.31) is not the same as in the case
of one player (recall Equation (3.5)). This is clearly due to the presence of a second market actor,
which leads to an expansion of the domain (from (0,∆) to (−∆,∆)) where Φ takes values in ]0, 1[.

Extending (3.6) to the present situation, the running payoff of player i ∈ {1, 2} at time t ≥ 0 is

(P it − St)Φ(P it −P
j
t )− bi

2
Φ(P it −P

j
t )2 = Xi

tΦ(Xi
t −X

j
t )− bi

2
Φ(Xi

t −X
j
t )2 =: Ri(X

1
t , X

2
t ), (3.32)

where bi ≥ 0 is a fixed constant and the process Xi, introduced in order to reduce the dimension
of the problem, represents the retailer’s unitary income when selling energy:

Xi
t := P it − St = xi − µt− σWt +

∑
τ ik≤t

δik, (3.33)

for every t ≥ 0, where we have used (3.30) and we have set xi = pi − s. In particular, we remark
that in the strip {(x1, x2) : −∆ < x1−x2 < ∆} the payoff Ri is a second-degree polynomial in the
variables x1, x2:

(Ri)|D = fi, (3.34)

fi(x1, x2) = −bi
8

+

(
bi

4∆
+

1

2

)
xi −

bi
4∆

xj +

(
bi

4∆2
+

1

2∆

)
xixj −

(
bi

8∆2
+

1

2∆

)
x2
i −

bi
8∆2

x2
j .

Finally, let ρ > 0 be the discount rate and let ci be the fixed intervention cost for player i ∈ {1, 2}.
It is clear that we are dealing with a nonzero-sum impulse game, belonging to the class studied

in Section 2, with (on the left-hand side we use the notations in Section 2)

S = R2, Z1 = Z2 = R, Γ1((x1, x2); δ) = (x1 + δ, x2), Γ2((x1, x2); δ) = (x1, x2 + δ),

fi = Ri, hi = 0, φi ≡ −ci, ψi ≡ 0,

and with the following functional to be maximized:

J i(x1, x2;ϕ1, ϕ2) = Ex1,x2

[ ∫ ∞
0

e−ρt
(
Xi
tΦ(Xi

t −X
j
t )− bi

2
Φ(Xi

t −X
j
t )2

)
dt− ci

( ∑
1≤k<M

e−ρτ
i
k

)]
,

(3.35)
for every initial state (x1, x2) ∈ R2 and for every strategy (ϕ1, ϕ2) (recall Definition 2.1).

3.2.2 Looking for a solution

Our goal is to apply the Verification Theorem 2.9 to the nonzero-sum game in (3.35). Hence, we
now try to heuristically find a solution to the corresponding QVI problem, in order to get a pair
of candidates Ṽ1, Ṽ2 for the value functions V1, V2.
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Candidates. We start with the two equations in (2.12), which we recall for reader’s convenience
(we do not have any terminal condition as S = R2):

HiṼi − Ṽi = 0, in {Mj Ṽj − Ṽj = 0},

max
{
AṼi − ρṼi +Ri,MiṼi − Ṽi} = 0, in {Mj Ṽj − Ṽj < 0},

(3.36)

for i, j ∈ {1, 2}, with i 6= j.

Remark 3.11. It is reasonable to assume that a Nash equilibrium does not correspond to a situation
where one of the players exits the market. In other words, we heuristically assume that both the
continuation regions {MiṼi − Ṽi < 0}, i ∈ {1, 2}, are included in the strip {(x1, x2) : −∆ <
x1 − x2 < ∆}, so that in (3.36) we can replace Ri by fi, thanks to (3.34).

Now, recall that {MiṼi − Ṽi = 0} corresponds to the region where player i ∈ {1, 2} intervenes
and remember that, in the case of contemporary intervention, player 1 has the priority. As a
consequence, we have {Mj Ṽj − Ṽj < 0,MiṼi − Ṽi = 0} = {MiṼi − Ṽi = 0}. Then, the equations
in (3.36) can be equivalently rewritten as

Ṽi =


MiṼi, in {MiṼi − Ṽi = 0},
ϕi, in {Mj Ṽj − Ṽj < 0,MiṼi − Ṽi < 0},
HiṼi, in {Mj Ṽj − Ṽj = 0},

(3.37)

for i, j ∈ {1, 2} and i 6= j, where ϕi is a solution to

Aϕi − ρϕi + fi = −µ(∂x1
+ ∂x2

)ϕi +
1

2
σ2(∂x1

+ ∂x2
)2ϕi − ρϕi + fi = 0. (3.38)

We now conjecture an expression for the three regions in (3.37). It is reasonable to assume
that player 1 intervenes if and only if her unitary income X1

t exits from a suitable interval, whose
boundaries depend on the state variable X2

t controlled by her opponent. We denote this interval by

]x1(X2
t ), x̄1(X2

t )[, where x1, x̄1 are suitable functions. Hence, we guess that {M1Ṽ1− Ṽ1 = 0} (the
intervention region of player 1) is given by

{
(x1, x2) : x1 /∈]x1(x2), x̄1(x2)[

}
. A symmetric argument

for the intervention region {M2Ṽ2 − Ṽ2 = 0} of player 2 leads to
{

(x1, x2) : x2 /∈]x2(x1), x̄2(x1)[
}

,
but we have to exclude from such region the points where player 1 already intervenes (in case of
contemporary intervention, player 1 has the priority). Finally, the common continuation region

{M1Ṽ1 − Ṽ1 < 0,M2Ṽ2 − Ṽ2 < 0} is just the complement of such sets. In short, see also Figure
3.1, we have{

M1Ṽ1 − Ṽ1 = 0
}

=
{

(x1, x2) : x1 ∈]−∞, x1(x2)] ∪ [x̄1(x2),+∞[
}

=: R,{
M2Ṽ2 − Ṽ2 = 0

}
=
{

(x1, x2) : x1 ∈]x1(x2), x̄1(x2)[, x2 ∈]−∞, x2(x1)] ∪ [x̄2(x1),+∞[
}

=: B,{
M1Ṽ1 − Ṽ1 < 0,M2Ṽ2 − Ṽ2 < 0

}
=
{

(x1, x2) : x1 ∈]x1(x2), x̄1(x2)[, x2 ∈]x2(x1), x̄2(x1)[
}

=: W.

We recall once more the interpretation: R is the region where player 1 intervenes (red area in the
picture), B is the region where player 2 intervenes (blue area in the picture), W is the region where
no one intervenes (white area in the picture). By (3.37) we then get

Ṽ1 =


H1Ṽ1, in B,

ϕ1, in W ,

M1Ṽ1, in R,

Ṽ2 =


M2Ṽ2, in B,

ϕ2, in W ,

H2Ṽ2, in R.

To go on, we need to estimate ϕi and the operators Mi,Hi. Let us start with ϕi. The only
differential operator in (3.38) is ∂x1

+ ∂x2
, which suggests the change of variable y1 = x1 + x2 and

y2 = x1 − x2, so that the PDE becomes a second-order linear ODE in the variable y1, which is
easily solvable for each y2 ∈ R fixed. Then, after reintroducing the original variables, we get the
following solution to (3.38):

ϕi(x1, x2) = Ai,+(x1 − x2)em+(x1+x2) +Ai,−(x1 − x2)em−(x1+x2) + ϕ̂i(x1, x2),
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x1
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Figure 3.1: Partition of the domain in the three regions R (red), B (blue), W (white) depending
on possible players’ interventions.

where Ai,+/− are suitable real functions, m+/− are the two roots of 1
2σ

2m2 − µm− ρ = 0 and ϕ̂i
(the particular solution to the corresponding ODE) is

ϕ̂i(x1, x2) = −
(
bi
8ρ

+
µ

2ρ2

)
+

(
bi

4∆ρ
+

µ

2∆ρ2
+

1

2ρ

)
xi −

(
bi

4∆ρ
+

µ

2∆ρ2

)
xj

+

(
bi

4∆2ρ
+

1

2∆ρ

)
xixj −

(
bi

8∆2ρ
+

1

2∆ρ

)
x2
i −

bi
8∆2ρ

x2
j .

We now estimate MiṼi and HiṼi, where the operators Mi,Hi have been defined in (2.11). Let
(x1, x2) ∈ R2 and let us start from the functions δi in (2.10): the definition here reads

{δ1(x1, x2)} = arg max
δ1∈R

Ṽ1(x1 + δ1, x2), {δ2(x1, x2)} = arg max
δ2∈R

Ṽ2(x1, x2 + δ2).

Heuristically, it is reasonable to assume that the function Ṽ1(·, x2) has a unique maximum point

x∗1(x2) and that this point belongs to the continuation region (where, by definition, Ṽ1 = ϕ1); we

can argue similarly for Ṽ2(x1, ·). Thus we get

x1 + δ1(x1, x2) = x∗1(x2), where {x∗1(x2)} = arg max
y∈R

ϕ1(y, x2),

x2 + δ2(x1, x2) = x∗2(x1), where {x∗2(x1)} = arg max
y∈R

ϕ2(x1, y).

Then, by the definition in (2.11) we have

M1Ṽ1(x1, x2) = ϕ1

(
x∗1(x2), x2

)
− c1, H1Ṽ1(x1, x2) = ϕ1

(
x1, x

∗
2(x1)

)
,

M2Ṽ2(x1, x2) = ϕ2

(
x1, x

∗
2(x1)

)
− c2, H2Ṽ2(x1, x2) = ϕ2

(
x∗1(x2), x2

)
,

for each (x1, x2) ∈ R2. We finally get the following (heuristic) candidates for the value functions:

Ṽ1(x1, x2) =


ϕ1

(
x1, x

∗
2(x1)

)
, in B,

ϕ1

(
x1, x2

)
, in W ,

ϕ1

(
x∗1(x2), x2

)
− c1, in R,

Ṽ2(x1, x2) =


ϕ2

(
x1, x

∗
2(x1)

)
− c2, in B,

ϕ2

(
x1, x2

)
, in W ,

ϕ2

(
x∗1(x2), x2

)
, in R.

Notice that the derivative of x2 7→ ϕ1

(
x∗1(x2), x2

)
− c1 (that is Ṽ1 in the region R) is(∂ϕ1

∂x1

)(
x∗1(x2), x2

)
·
(
x∗1
)′

(x2) +
(∂ϕ1

∂x2

)(
x∗1(x2), x2

)
. (3.39)
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Conditions. We now collect all the conditions the candidates Ṽ1, Ṽ2 have to satisfy. We just
write the equations for Ṽ1, the ones for Ṽ2 being symmetric. More in detail, we need to set the
optimality condition for x∗1 and to impose the regularity required in the assumptions of Theorem
2.9, that is (Di is the continuation region of player i)

Ṽ1 ∈ C2(D2 \ ∂D1) ∩ C1(D2) ∩ C0(R2).

Let A,B,C,D be the intersections of the four curves xi, x̄i, as in Figure 3.1. As for the C0

condition, we have to set a C0-pasting in the boundaries between the three regions, that are the
curved segments AD,BC and the two vertical curves. As for the C1 condition (D2 is the central
horizontal strip), we have to add a C1-pasting in the segments AB and CD. As for the C2

condition, it is satisfied by definition.

- Optimality of x∗1. As x∗1(x2) is by definition the maximizer of x1 7→ ϕ1(x1, x2), for each
x2 ∈ R we have the following first-order condition:(∂ϕ1

∂x1

)(
x∗1(x2), x2

)
= 0, x2 ∈ R.

- Continuity. We first set the continuity on the curve x1 = x1(x2) (left vertical curve in the

picture). The function Ṽ1 has two different expressions in the central vertical strip, one in
the white region W and one in the blue region B, so that we need two separate continuity
conditions, one in the segment AB and one outside such segment:

ϕ1

(
x∗1(x2), x2

)
− c1 = ϕ1

(
x1(x2), x2

)
, x2 ∈

[
xA2 , x

B
2

]
,

ϕ1

(
x∗1(x2), x2

)
− c1 = ϕ1

(
x1(x2), x∗2

(
x1(x2)

))
, x2 ∈ R \

[
xA2 , x

B
2

]
.

Similarly, for the continuity on the curve x1 = x̄1(x2) (right vertical curve in the picture):

ϕ1

(
x∗1(x2), x2

)
− c1 = ϕ1

(
x̄1(x2), x2

)
, x2 ∈

[
xD2 , x

C
2

]
,

ϕ1

(
x∗1(x2), x2

)
− c1 = ϕ1

(
x̄1(x2), x∗2

(
x̄1(x2)

))
, x2 ∈ R \

[
xD2 , x

C
2

]
.

We now set the continuity on the segment AD, which belongs to the curve x2 = x2(x1) (lower
horizontal curve in the picture):

ϕ1

(
x1, x

∗
2(x1)

)
= ϕ1

(
x1, x2(x1)

)
, x1 ∈

]
xA1 , x

D
1

[
.

Similarly, for the continuity on the segment BC, which belongs to the curve x2 = x̄2(x1)
(upper horizontal curve in the picture):

ϕ1

(
x1, x

∗
2(x1)

)
= ϕ1

(
x1, x̄2(x1)

)
, x1 ∈

]
xB1 , x

C
1

[
.

- Differentiability. We now set a C1-pasting on the segment AB, which belongs to the curve
x1 = x1(x2) (left vertical curve in the picture). As ϕ1 is a two-dimensional function, we need
to set one condition for each derivative (for ∂/∂x2 we use (3.39) and notice that the first
term is zero because of the optimality condition):(∂ϕ1

∂x1

)(
x1(x2), x2

)
= 0, x2 ∈

[
xA2 , x

B
2

]
,(∂ϕ1

∂x2

)(
x1(x2), x2

)
=
(∂ϕ1

∂x2

)(
x∗1(x2), x2

)
, x2 ∈

[
xA2 , x

B
2

]
.

Similarly, for the C1-pasting on the segment DC, which belongs to the curve x1 = x̄1(x2)
(right vertical curve in the picture):(∂ϕ1

∂x1

)(
x̄1(x2), x2

)
= 0, x2 ∈

[
xD2 , x

C
2

]
,(∂ϕ1

∂x2

)(
x̄1(x2), x2

)
=
(∂ϕ1

∂x2

)(
x∗1(x2), x2

)
, x2 ∈

[
xD2 , x

C
2

]
.
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We can finally collect all the conditions our candidate function ϕ1 must satisfy:

(
∂ϕ1

∂x1

)(
x∗1(x2), x2

)
= 0, x2 ∈ R,

ϕ1

(
x∗1(x2), x2

)
= ϕ1

(
x1(x2), x2

)
+ c1, x2 ∈

[
xA2 , x

B
2

]
,

ϕ1

(
x∗1(x2), x2

)
= ϕ1

(
x1(x2), x∗2

(
x1(x2)

))
+ c1, x2 ∈ R \

[
xA2 , x

B
2

]
,

ϕ1

(
x∗1(x2), x2

)
= ϕ1

(
x̄1(x2), x2

)
+ c1, x2 ∈

[
xD2 , x

C
2

]
,

ϕ1

(
x∗1(x2), x2

)
= ϕ1

(
x̄1(x2), x∗2

(
x̄1(x2)

))
+ c1, x2 ∈ R \

[
xD2 , x

C
2

]
,

ϕ1

(
x1, x

∗
2(x1)

)
= ϕ1

(
x1, x2(x1)

)
, x1 ∈

]
xA1 , x

D
1

[
,

ϕ1

(
x1, x

∗
2(x1)

)
= ϕ1

(
x1, x̄2(x1)

)
, x1 ∈

]
xB1 , x

C
1

[
,(

∂ϕ1

∂x1

)(
x1(x2), x2

)
= 0, x2 ∈

[
xA2 , x

B
2

]
,(

∂ϕ1

∂x2

)(
x1(x2), x2

)
=
(
∂ϕ1

∂x2

)(
x∗1(x2), x2

)
, x2 ∈

[
xA2 , x

B
2

]
,(

∂ϕ1

∂x1

)(
x̄1(x2), x2

)
= 0, x2 ∈

[
xD2 , x

C
2

]
,(

∂ϕ1

∂x2

)(
x̄1(x2), x2

)
=
(
∂ϕ1

∂x2

)(
x∗1(x2), x2

)
, x2 ∈

[
xD2 , x

C
2

]
.

Then, we have to consider the 11 equations above, along with the corresponding ones for ϕ2.
Therefore if a solution to such system exists, then we have a well-defined candidate and we can
safely apply the verification theorem, as we did in the one-player case.

This problem remains still open. In particular, concerning the above system for ϕ1, we consid-
ered the three test cases when x̄1(·), x1(·) and x∗1(·) are: constant, linear and quadratic functions
of x2. In none of these case we could find a satisfactory answer to our problem, which would most
probably require the use of viscosity solutions as in [8] in order to go beyond the case of smooth
value functions. This is postponed to future research.

3.2.3 The case of a stubborn competitor

We focus here on the case when one of the two players, say player 2, never changes her retail price
(in this sense she is a stubborn competitor). Therefore her retail price is constant, i.e. P 2

t ≡ p2

for every t ≥ 0. This can be artificially seen as a particular case of the two-player retail game of
the previous section, supposing that player 2 has an infinite intervention cost, c2 = +∞. In other
terms, player 2 intervention cost is so high that it is never optimal for her to change the retail
price. Moreover, in order to base our intuition on the results we obtained in the one-player case,
we assume that the wholesale price is driftless, i.e. µ = 0.

In this situation the objective functional of player 1 (recall Equation (3.35)) is given by

J1(x1, x2;φ1) = Ex1,x2

[ ∫ ∞
0

e−ρt
(
X1
t Φ(X1

t −X2
t )− b1

2
Φ2(X1

t −X2
t )

)
dt− c1

∑
1≤k<M

e−ρτ
1
k

]
,

for every initial state (x1, x2) ∈ R2 (recall that xi = pi−s) and every strategy φ1 (recall that player
2 does not intervene). Equivalently, choosing as state variables P 1 and S, the above functional
reads

J1(p1, s;φ1) = Ep1,s

[ ∫ ∞
0

e−ρt
(

(P 1
t − St)Φ(P 1

t − p2)− b1
2

Φ2(P 1
t − p2)

)
dt− c1

∑
1≤k<M

e−ρτ
1
k

]

for every initial state (p1, s) ∈ R2, where p1 = P 1
0 and s = S0, every strategy φ1 and where p2 = P 2

0 .
The problem is clearly simplified, since only one market actor is playing the game. Nevertheless,
the setting is still bi-dimensional, since the state variables are P 1 and S. Notice that the impulses
of player 1 modify only the state P 1.

Remark 3.12. From now on we consider only the maximization problem of player 1. Since there
is no ambiguity about which player is optimizing her objective, we drop both the subscript and the
superscript 1 from the notation.
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For every (p, s) ∈ R2, player 1 value function V (p, s) is defined as the supremum of J(p, s;φ) over
all admissible strategies φ. Analogously to the heuristics in the previous section, it is reasonable to
assume that the continuation region is included in the strip {(p, s) : p2 −∆ < p < p2 + ∆, s ∈ R}
and the candidate Ṽ for the value function V is (recall that player 2 never intervenes because she
has infinite intervention cost):

Ṽ =

{
MṼ , in {MṼ − Ṽ = 0}
ϕ, in {MṼ − Ṽ < 0}

, (3.40)

where MṼ (p, s) = supδ∈R Ṽ (p+ δ, s)− c and where ϕ solves

Aϕ− ρϕ+ f =
1

2
σ2∂ssϕ− ρϕ+ f = 0, (3.41)

with

f(p, s) = − 1

2∆
(p− s)(p− p2 −∆)− b

8∆2
(p− p2 −∆)

2
. (3.42)

Hence we expect ϕ to be of the form

ϕ(p, s) = A(p)ems +B(p)e−ms + ϕ̂(p, s),

where A and B are suitable real functions, m =
√

2ρ/σ and ϕ̂(p, s) is a particular solution of the
ODE (3.41).

We conjecture that the continuation region is D = {(p, s) ∈ R2 : p ∈]p(s), p(s)[}, for suitable
functions p, p. This means that whenever player 1 retail price Pt exits the interval ]p(St), p(St)[,
she intervenes to push her retail price towards a target price p∗(St), where p∗(s), for s ∈ R, is
obtained as the maximizer of the function p 7→ f(p, s) in (3.42) since, being µ = 0, the optimizer

of Ṽ (·, s) is the same as the maximiser of f(·, s) (compare to Proposition 3.7). It is also reasonable
to assume that this maximum point is unique and it belongs to the continuation region, so that
we have

{δ(p, s)} = arg max
δ∈R

Ṽ (p+ δ, s) and p+ δ(p, s) = p∗(s).

A simple computation gives

p∗(s) =
2∆

4∆ + b

[(
b

2∆
+ 1

)
(p2 + ∆) + s

]
. (3.43)

Essentially, each time her price falls outside the continuation region D, she intervenes to push the
price towards the target p∗(s). Moreover, intervention costs being fixed for player 1, we guess that
p(s) and p(s) are equidistant from p∗(s) in D as in the one-player case (see Proposition 3.7), hence
|p∗(s)− p(s)| = |p∗(s)− p(s)| in the continuation region.

Now, notice that p∗(p2 + ∆) = p2 + ∆ and that the point A := (p2 + ∆, p2 + ∆) belongs to the
boundary of the intervention region. Moreover for any price p ≥ p2 + ∆ the market share of player
1 is zero, so that the set {(p, s) : p ≥ p2 + ∆} is contained in the intervention region. Since p and
p are equidistant from p∗ at all point in the continuation region, they have to be equidistant from
p∗ at the point A as well, which implies that p = p = p∗ at the point A.

This situation is summarized in Figure 3.2, where p and p intersect at the point A, the contin-
uation region is in white (W) and the intervention area is in red (R).

More precisely, we have:{
MṼ − Ṽ < 0

}
=
{

(p, s) : p ∈]p(s), p(s)[, s < sA
}

= W,{
MṼ − Ṽ = 0

}
= R = W c,

where we set sA := p2 + ∆. So, the candidate function Ṽ is (notice that Ṽ (p∗(s), s) − c =
ϕ(p∗(s), s)− c):

Ṽ (p, s) =

{
ϕ(p∗(s), s)− c, in R

ϕ(p, s), in W.
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p(s) p(s)

p∗(s)

A

p2p2 − ∆ p2 + ∆

p

s

Figure 3.2: Partition of the domain in the two regions R (red) and W (white) depending on possible
player 1 interventions in the case of a stubborn competitor.

The regularity conditions of the value function required by the verification theorem are: V ∈
C2(R2 \ ∂D) ∩ C1(R2), so that it suffices to ask optimality of p∗(s) and a C0 and a C1-pasting at
the frontier of D: for all s < sA = p2 + ∆ we have(∂ϕ

∂p

)(
p∗(s), s

)
= 0,

ϕ
(
p∗(s), s

)
− c = ϕ

(
p(s), s

)
,

ϕ
(
p∗(s), s

)
− c = ϕ

(
p(s), s

)
,(∂ϕ

∂p

)(
p(s), s

)
=
(∂ϕ
∂p

)(
p∗(s), s

)
= 0,(∂ϕ

∂p

)(
p(s), s

)
=
(∂ϕ
∂p

)(
p∗(s), s

)
= 0,(∂ϕ

∂s

)(
p(s), s

)
=
(∂ϕ
∂s

)(
p∗(s), s

)
,(∂ϕ

∂s

)(
p(s), s

)
=
(∂ϕ
∂s

)(
p∗(s), s

)
.

As the points (p∗(s), s) belong to the continuation region for each s < sA, we have

V (p∗(sA−), sA−) = ϕ(p∗(sA−), sA−).

Moreover, as the pointA = (p∗(sA), sA) belongs to the intervention region, we have V (p∗(sA), sA) =
ϕ(p∗(sA), sA) − c. Since ϕ is continuous by definition, we deduce that V is not continuous at A,
giving one more argument urging the use of viscosity solutions for a rigorous treatment of such
models.

Remark 3.13. From an economical point of view, this situation makes sense: by keeping her
retail price constant when the sourcing cost increases, player 2 forces her opponent (player 1) to
increase unilaterally her price and thus to lose a bigger and bigger market share until she exits
the market. This is a strategy that could be implemented by financially sound players (i.e. able
to endure financial losses due to a retail price lower than the sourcing cost) to push their weak
competitors out of the market.

4 Conclusions

In this paper we consider a general two-player nonzero-sum impulse game, whose state variable
follows a diffusive dynamics driven by a multi-dimensional Brownian motion. After setting the
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problem, we provide a verification theorem giving sufficient conditions in order for the solutions of
a suitable system of quasi-variational inequalities to coincide with the value functions of the two
players. To the best of our knowledge this result is new to the literature on impulse games and
it constitutes the major mathematical contribution of the present paper. The general setting is
motivated by a model of competition among retailers in electricity markets, which we also treat
in both one-player and two-player cases. While in the one-player case we gave a full rigorous
treatment of the impulse control problem, in the two-player case we provide a detailed heuristic
study of the shape of the value functions and their optimal strategies. Making the heuristics fully
rigorous would most probably require the use of viscosity solutions, which looks far from being an
easy extension of the methods employed in [8] for zero-sum impulse games. This is left to future
research.
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In this appendix we have gathered all auxiliary results and proofs that have been used in the
one-player Section 3.1. Proposition 3.7 follows from Lemmas A.1 and A.2.
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Lemma A.1. A solution (A, ȳ) ∈ ]0,+∞[2 to (3.27a)-(3.27b) exists and it is unique.

Proof. First step. Let us start by Equation (3.27a). For a fixed A > 0, we are looking for the
strictly positive zeros of the function hA defined by

hA(y) = Aθeθy −Aθe−θy − 2k2y, (A.1)

for each y > 0. The derivative is

h′A(y) = Aθ2eθy +Aθ2e−θy − 2k2 =
Aθ2

(
eθy
)2 − 2k2

(
eθy
)

+Aθ2

eθy
.

We need to consider two cases, according to the value of A. Let

Ā =
k2

θ2
=
σ2(2∆ + b)

4ρ2∆2
. (A.2)

If A ≥ Ā we have h′A > 0 in ]0,∞[; hence, since hA(0) = 0, Equation (3.27a) does not have any
solution in [0,+∞[. On the contrary, if A < Ā we have h′A < 0 in ]0, ỹ[ and h′A > 0 in ]ỹ,∞[,
for a suitable ỹ = ỹ(A) > 0; hence, since hA(0) = 0 and hA(+∞) = +∞, Equation (3.27a) has
exactly one solution ȳ = ȳ(A) > 0 (notice that ȳ(A) > ỹ(A)). In short, we have proved that, for a
fixed A > 0, Equation (3.27a) admits a solution ȳ ∈]0,∞[ if and only if A ∈]0, Ā[; in this case the
solution is unique and we denote it by ȳ = ȳ(A).

Finally, we remark that

lim
A→0+

ȳ(A) = +∞, lim
A→Ā−

ȳ(A) = 0. (A.3)

The first limit follows by ȳ(A) > ỹ(A) and limA→0+ ỹ(A) = +∞ (this one by a direct computation
of ỹ), whereas the second limit is immediate.

Second step. We now consider Equation (3.27b). For each A ∈ ]0, Ā[, we define

g(A) = −Aeθȳ(A) −Ae−θȳ(A) + k2ȳ
2(A) + 2A, (A.4)

where ȳ(A) is well-defined by the first step. We are going to prove that

lim
A→0+

g(A) = +∞, lim
A→Ā−

g(A) = 0, g′ < 0. (A.5)

This concludes the proof: indeed, if (A.5) holds, it follows that the equation g(A) = c, which is just
a rewriting of (3.27b), has exactly one solution A ∈]0, Ā[. It is then clear that the pair (A, ȳ(A))
is a solution to (3.27a)-(3.27b) (the unique one, since uniqueness holds for (3.27b)).

It remains to check (A.5). For the first claim in (A.5), by (3.27a) we can write A as a function
of ȳ,

A =
2k2

θ

ȳ(A)

eθȳ(A) − e−θȳ(A)
, (A.6)

so that g also reads

g(A) = k2ȳ
2(A)− 2k2

θ

eθȳ(A) + e−θȳ(A) − 2

eθȳ(A) − e−θȳ(A)
ȳ(A), (A.7)

which we rewrite as

g(A) = k2ȳ
2(A)− 2k2

θ

(eθȳ(A) − 1)2

(eθȳ(A))2 − 1
ȳ(A); (A.8)

then, by (A.3) we have

lim
A→0+

g(A) = lim
z→+∞

(
k2z

2 − 2k2

θ

(eθz − 1)2

(eθz)2 − 1
z

)
= +∞.

As for the second claim in (A.5), it is immediate by the definition of g and by (A.3). We finally
show that the third claim in (A.5) holds. Notice that

g′(A) = −eθȳ(A) − e−θȳ(A) + 2−
(
Aθeθȳ −Aθe−θȳ − 2k2ȳ

)
ȳ′(A).
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By (3.27a), the coefficient of ȳ′(A) is zero; thus, we have

g′(A) = −eθȳ(A) − e−θȳ(A) + 2 = − (eθȳ(A) − 1)2

eθȳ(A)
< 0, (A.9)

which concludes the proof.

As already noticed in (A.6), using (3.27a) we can write A as a function of ȳ: for every ȳ > 0
we have

A(ȳ) =
2k2

θ

ȳ

eθȳ − e−θȳ
. (A.10)

We are going to consider the function ξ := g ◦ A, where g has been defined in (A.4) and A is as
in (A.10). In (A.8) we have already computed an expression for ξ, which we recall here: for every
ȳ > 0 we have

ξ(ȳ) = (g ◦A)(ȳ) = k2ȳ
2 − 2k2

θ

(eθȳ − 1)2

(eθȳ)2 − 1
ȳ. (A.11)

Lemma A.2. Let (A, ȳ) be as in Lemma A.1 and let c̄ = ξ(∆2/(2∆ + b)), with ξ as in (A.11).
Then, the condition in (3.28) is satisfied if and only if c ≤ c̄.

Proof. Let g be as in (A.4) and assume, for the moment, that the function A in (A.10) is decreasing.
Then, since g is decreasing by (A.5), we deduce that ξ = g ◦ A is increasing. Hence, we have
ȳ < ∆ − xv if and only if ξ(ȳ) < ξ(∆ − xv). The conclusion follows since ξ(ȳ) = g(A(ȳ)) = c by
(3.27b) and since ∆− xv = ∆2/(2∆ + b) by (3.11).

So, we just need to prove that ȳ 7→ A(ȳ) is decreasing. A direct differentiation in (A.10) leads
to an expression whose sign is not easy to estimate. Then, we write A = A(ȳ) in (3.27a) and
differentiate with respect to ȳ. We get

A′(ȳ)θ
(
eθȳ − e−θȳ

)
+A(ȳ)θ2

(
eθȳ + e−θȳ

)
− 2k2 = 0,

so that, after rearranging, we have

A′(ȳ) = − A(ȳ)θ2eθȳ +A(ȳ)θ2e−θȳ − 2k2

θ(eθȳ − e−θȳ)
= −

h′A(ȳ)(ȳ)

θ(eθȳ − e−θȳ)
< 0, (A.12)

where in the numerator we have recognized h′A(ȳ)(ȳ), with hA(ȳ) as in (A.1), and we have h′A(ȳ)(ȳ) >

0 since hA(ȳ) is increasing in [ỹ,+∞[3 ȳ (see Lemma A.1).

Lemma A.3. Let (3.23) hold and let Ṽ and x∗ be as in Definition 3.6. Then, for every x ∈ R we
have

MṼ (x) = ϕA(x∗)− c.

In particular, we have

{MṼ − Ṽ < 0} = ]x, x̄[, {MṼ − Ṽ = 0} = R \ ]x, x̄[. (A.13)

Proof. First of all, recall that Ṽ is symmetric with respect to x∗ and notice that:

- Ṽ is strictly decreasing in ]x∗, x̄[ (since we have Ṽ = ϕA by definition and ϕ′A < 0 in ]x∗, x̄[
by the proof of Lemma A.1);

- Ṽ is constant in [x̄,+∞[ by definition of Ṽ , with Ṽ ≡ ϕA(x∗)− c.

Then, we deduce that

max
y∈R

Ṽ (y) = Ṽ (x∗) = ϕA(x∗), min
y∈R

Ṽ (y) = ϕA(x∗)− c. (A.14)

As a consequence, for every x ∈ R we have

MṼ (x) = max
δ∈R
{Ṽ (x+ δ)− c} = max

y∈R
Ṽ (y)− c = ϕA(x∗)− c.
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By the definition of Ṽ , we have

MṼ (x)− Ṽ (x) = 0, in R\]x, x̄[.

Moreover, as ϕA(x̄) = ϕA(x∗) − c by (3.25) and ϕA(x̄) = min[x,x̄] ϕA by the previous arguments,
we have

MṼ (x)− Ṽ (x) = ϕA(x∗)− c− ϕA(x) = ϕA(x̄)− ϕA(x) < 0, in ]x, x̄[,

which concludes the proof.

We conclude this appendix with the proof of Proposition 3.8.

Proof of Proposition 3.8. We have to check that the candidate Ṽ satisfies all the assumptions of
Proposition 3.4. For the reader’s convenience, we briefly report these conditions:

(i) Ṽ is bounded and maxx∈R Ṽ (x) exists;

(ii) Ṽ ∈ C2(R \ {x, x̄}) ∩ C1(R);

(iii) Ṽ satisfies max{AṼ − ρṼ +R,MṼ − Ṽ } = 0;

(iv) the optimal control is admissible, i.e., u∗(x) ∈ U for every x ∈ R.

Condition (i) and (ii). The first condition holds by (A.14), whereas the second condition follows

by the definition of Ṽ .
Condition (iii). We have to prove that for every x ∈ R we have

max{AṼ (x)− ρṼ (x) +R(x),MṼ (x)− Ṽ (x)} = 0. (A.15)

In ]x, x̄[ the claim is true, as MṼ − Ṽ < 0 by (A.13) and AṼ − ρṼ + R = 0 by definition (recall

that here we have R = f and Ṽ = ϕA, with AϕA − ρϕA + f = 0). As for R\]x, x̄[, we already

know by (A.13) that MṼ − Ṽ = 0. Then, to conclude we have to prove that

AṼ (x)− ρṼ (x) +R(x) ≤ 0, ∀x ∈ R\]x, x̄[.

By symmetry, it is enough to prove the claim for x ∈ [x̄,+∞[. By the definition of Ṽ (x) and (3.25),

in the interval [x̄,+∞[ we have Ṽ ≡ ϕA(x∗)− c = ϕA(x̄); hence, the inequality reads

−ρϕA(x̄) +R(x) ≤ 0, ∀x ∈ [x̄,+∞[.

As R is decreasing in [xv,+∞[ ⊇ [x̄,+∞[, it is enough to prove the claim in x = x̄:

−ρϕA(x̄) +R(x̄) ≤ 0.

Since AϕA(x̄)− ρϕA(x̄) + f(x̄) = 0 and f(x̄) = R(x̄), we have

−ρϕA(x̄) + f(x̄) = −σ
2

2
ϕ′′A(x̄) ≤ 0,

which is true as x̄ is a local minimum of ϕA ∈ C∞(R), so that ϕ′′A(x̄) ≥ 0.
Condition (iv). Let x ∈ R and recall (3.7): we have to show that

Ex
[∑
k≥1

e−ρτ
∗
k

]
<∞.

When using the optimal control u∗, the retailer intervenes when the process hits x or x̄ and shifts
the process to x∗ ∈ ]x, x̄[. As a consequence, we can decompose each variable τ∗k as a sum of
suitable exit times from ]x, x̄[. Given y ∈ R, let ζy denote the exit time of the process y + σW ,
where W is a Brownian motion, from the interval ]x, x̄[. Then, we have τ∗1 = ζx and

τ∗k = ζx +

k−1∑
l=1

ζx
∗

l ,
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for every k ≥ 2, where the variables ζx
∗

l are independent and distributed as ζx
∗
. As a consequence,

we have

Ex
[∑
k≥2

e−ρτ
∗
k

]
= Ex

[∑
k≥2

e−ρ
(
ζx+

∑k−1
l=1 ζ

x∗
l

)]
= Ex

[
e−ρζ

x∑
k≥2

∏
l=1,...,k−1

e−ρζ
x∗
l

]
.

By the Fubini-Tonelli theorem and the independence of the variables:

Ex
[
e−ρζ

x∑
k≥2

∏
l=1,...,k−1

e−ρζ
x∗
l

]
= Ex

[
e−ρζ

x]∑
k≥2

∏
l=1,...,k−1

Ex
[
e−ρζ

x∗
l

]
.

As the variables ζx
∗

l are identically distributed with ζx
∗

l ∼ ζx
∗
, we can conclude:∑

k≥2

∏
l=1,...,k−1

Ex
[
e−ρζ

x∗
l

]
=
∑
k≥2

Ex
[
e−ρζ

x∗
]k−1

<∞,

which is a converging geometric series.
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