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This paper presents a real option valuation model of a power plant, which accounts for physical constraints

and market incompleteness. Switching costs, minimum on-o� times, ramp rates, or non-constant heat rates

are important characteristics that can lead, if neglected, to overestimated values. Existence of non-hedgeable

uncertainties is also an important feature of energy markets whose impact on assets value is often neglected.

We use the utility indi�erence approach to de�ne the value of the physical asset. We derive the associated

optimal control problems and provide a characterization of their solutions by means of a coupled system of

re�ected Backward Stochastic Di�erential Equations (BSDE). We relate this system to a system of variational

inequalities, and we provide a numerical comparative study by implementing BSDE simulation algorithms,

and PDE �nite di�erences schemes.

Key words : Real Option; Backward Stochastic Di�erential Equation; Utility Indi�erence; Incomplete

Market; Partial Di�erential Equation

1. Introduction.

To assess the �nancial value of their production assets, power companies traditionally use the concept

of Discounted Cash Flows (DCF), where future cash �ows are estimated and discounted at a suitable

rate. Subtracting investment costs to the DCF gives the expected Net Present Value (NPV), whose

sign is an indicator of investment pro�tability. Nevertheless, this method usually underestimates

the value of investments because it does not account for the �exibility or optionality embedded in

the investments. To capture this optionality, valuation methods, inspired by the �nancial option

pricing theory, have been developed. These methods are known as Real Option valuation, since
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the ownership of a production asset can be seen as a right to use this asset over its lifetime and

then receive the generated cash �ows. The fundamental concepts of this theory are presented in the

books by Dixit and Pindyck (1994), Trigeorgis (1996) or Schwartz and Trigeorgis (2004), and are

easily illustrated on the following example. Suppose a thermal power plant is built at time 0 and its

estimated lifetime is T . Let Se
t and Sf

t be respectively the electricity spot price and fuel spot price

at time t. One would intuitively produce electricity at times t when the spark spread Se
t −HS

f
t is

positive, thus receiving a payo�
∫ T

0
(Se

t −HS
f
t )+dt at time T . Here H is the heat rate of the power

plant, representing the volume of fuel needed to produce 1 MWh. We can then identify the value

of the plant to the price of an option on (Se, Sf ) paying a stream of call options. Powerful option

pricing methods, well developed in the �nancial market industry, can be used to price this option

and estimate the power plant value. The investment decision would then be taken by comparing

this value to the building cost of the plant.

The previous argument, valid on the above simple example, fails when the problem becomes more

complex. Indeed, the above payo� supposes that the plant manager is able to start-up and shut-

down the plant at any times, which is not the case in the real world. The payo� of the real option

is in general much more exotic. In addition, electricity markets are usually incomplete and some

uncertainties are not fully correlated to traded assets, which makes it more di�cult to estimate the

real option value. Recent works have tackled problems related to the optimal control of a power

plant and its real option valuation. Deng and Oren (2003), Tseng and Barz (2002) or Gardner and

Zhuang (2000) propose di�erent methods to take production constraints into account, based on

Stochastic Dynamic Programming. Hamadène and Jeanblanc (2005) study the starting and stopping

problem of a power plant subject to start-up and shut-down costs in the Backward Stochastic

Di�erential Equation (BSDE) framework. Carmona and Ludkovski (2006) studied a generalization

to multiple mode switching. In all these papers, the real option price is de�ned as the maximum

expected revenue of the power plant under risk-neutral or historic probability. In fact, it is argued

in Dixit and Pindyck (1994) and Trigeorgis (1996), that the question of non-traded assets, and more

generally market incompleteness, can be approached by solving a dynamic programming problem
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with a suitable discount rate accounting for the risk preferences of the agent. The discount rate is

supposed to measure the agent's aversion towards the non-hedgeable risk.

In this paper, we propose an alternative method to account for both portfolio constraints (and

market incompleteness, as a special case) and production constraints (mainly minimal on-o� times,

switching costs, ramp rates, non-constant heat rate). This method is based on the concept of utility

indi�erence, and thus handles risk aversion consistently with classical economic theory. We verify

that this pricing method reduces to the classical no-arbitrage pricing theory in the frictionless case.

The main tool of our analysis is the theory of Backward Stochastic Di�erential Equations (BSDE),

which uni�es the two methodologies of Dixit and Pindyck, dynamic programming, on the one hand,

and contingent claims analysis, on the other hand, see e.g. El Karoui et al. (1997b).

Our main result provides a characterization of the utility indi�erence value of the production

asset as the initial value of a coupled system of re�ected BSDEs. Our results extend the methods

of Rouge and El Karoui (2000) and Hu et al. (2005) who solved a similar valuation problem for

European contingent claim. By the classical connection between BSDEs and semilinear PDEs, the

above main result also implies a characterization of the utility indi�erence value as the solution

of a coupled system of obstacle-semilinear PDEs. We next use these two representations to im-

plement two alternative classes of numerical methods. The BSDE representation suggests to use

a Monte Carlo based simulation algorithm (Bally et al. (2005), Bouchard and Touzi (2005), Go-

bet et al. (2004)), while the PDE representation suggests to use a �nite di�erences scheme. We

provide a comparative implementation of both methods in several examples with a maximum of

three-dimensional state variable. We �nd that the �nite di�erences scheme outperforms the BSDE

simulation algorithm in all of our experiments. However, while the Monte Carlo algorithm is open

for an implementation beyond the three-dimensional case, the �nite di�erences method is limited

by the curse of dimensionality.

The paper is organized as follows. Section 3 formulates the optimal control problem arising in the

de�nition of the utility-based valuation. In Section 4, we state the veri�cation result which relates

this optimal control problem to a coupled system of re�ected BSDEs. In Section 5, we show the
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existence of a solution to this system. The problem is specialized in Section 6 to the case where the

market is complete. We also show that the no-arbitrage price in a complete market is obtained as

a limiting case when switching costs and on-o� times are sent to zero. In Section 7, we provide an

equivalent formulation of the coupled system of BSDEs in terms of a coupled system of variational

inequalities. We �nally present in Section 8 a numerical comparative study between BSDE and PDE

based methods for the valuation of a coal-�red power plant.

2. Notations.

Let (Ω,F ,P) be a complete probability space endowed with a �ltration F := {Ft , t ≥ 0} which

satis�es the usual conditions. Let T > 0 be a given �xed maturity, and {Wt,0≤ t≤ T} a Brownian

motion on (Ω,F ,F,P) with values in Rn. We denote by E[.] the expectation operator under P and

Et[.] := E[.|Ft] the conditional expectation operator with respect to Ft. Expectation under another

probability measure Q will be denoted by EQ[.].

We will make use of the following notation throughout the article. For a subsetK of Rn, we denote

by L∞(K) the set of all bounded FT -measurable K-valued random variables, and by H2(K) the set

of all F-adapted K-valued processes C such that: E
(∫ T

0
C2

t dt
)
<∞. The subset of all continuous

processes in H2(K) is denoted H2
0(K). The set of all F-adapted, K-valued and bounded processes

is denoted by H∞(K). Similarly, H∞
0 (K) consists of all continuous processes of H∞(K). The set of

all F-adapted, K-valued, continuous, non-decreasing processes, starting from 0 is denoted J (K).

The setMn(K) is the collection of all n×n matrices with entries inK. For a matrixM ∈Mn(K),

we denote by M∗ its transpose. Given two vectors x, y ∈Rd, we denote by x ·y the Euclidean scalar

product, by |x| =
√
x ·x the Euclidean norm, and by diag[x] the diagonal matrix with diagonal

elements given by the components of x. Finally, for x, y ∈ R, we shall use the notations x ∧ y =

min{x, y} and x∨ y= max{x, y}.

3. Problem Formulation.

Throughout the paper we consider an agent whose preferences are described by the exponential

utility function with parameter η > 0:

U(x) := −e−ηx, x∈R .
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The parameter η > 0 corresponds to the constant absolute risk aversion level of the agent. This

agent is allowed to manage a physical asset and to invest on a �nancial market.

3.1. Input and Output Commodity Market.

We consider a �nancial market on which are traded the input and output commodities, and contain-

ing a non-risky �nancial asset, whose price process is normalized to unity, by the usual change of

numéraire. In order to allow for market incompleteness, we assume that the �nancial market is de-

�ned by a multidimensional stochastic price process S with values in RN , solution of the multivariate

stochastic di�erential equation:

dSt = µ̂(t,St)dt+Σ̂(t,St)dWt ,

where µ̂(t,St) = diag[St]µt, Σ̂(t,St) = diag[St]Σt, and the stochastic processes (µ,Σ), valued respec-

tively in RN and MN(R), are bounded predictable processes. We also suppose that Σ has full rank

and Σ−1 is bounded.

3.2. Management Strategies.

The physical asset can be inM di�erent modes. We denote by ψi
t, 1≤ i≤M , the instantaneous rate

of bene�t in mode i. Throughout this paper, we assume that ψi ∈H∞(R). Our analysis is based on

the approach of quadratic BSDEs developed by Kobylanski (see Kobylanski (2000)), which requires

the boundedness of the terminal condition. A possible extension to unbounded terminal conditions

may be obtained by following the recent paper by Briand and Hu (2005).

Example 1 (linear production cost). The simplest example has two states o� (0) and on

(1), no maintenance costs, i.e. ψ0 ≡ 0, and a linear production cost function of the type ψ̃1
t =

q (S1
t −HS2

t ), where S1 is the electricity spot price, S2 the gas spot price, q is a constant production

capacity, and H is a constant heat rate. As ψ1 needs to be bounded, we can de�ne ψ1
t = h

(
ψ̃1

t

)
where the function h is the threshold function: h(x) := x1[C,C] +C1(−∞,C] +C 1[C,∞).

In addition to the bene�t rate functions ψi, the production asset is characterized by an horizon

T , a terminal payo� χ∈L∞(R) at time T , switching costs Ci,j ≥ 0 when switching from mode i to

j 6= i and minimal times δi in each mode. In words, this means that switching the production asset
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from mode i to mode j 6= i at some time t induces the cost Ci,j, and implies that the production

regime can not be changed before time t+ δj. We suppose throughout the paper the conditions:

∀n≥ 1, ∀(i0, . . . , in), Ci0,i1 + · · ·+Cin−1,in +Cin,i0 + δi0 + · · ·+ δin > 0 (1)

∀i, j, k, Ci,j +Cj,k ≥Ci,k . (2)

Condition (1) implies that a management strategy with in�nitely many switches either impossible

or non-optimal. Condition (2) is a natural condition on the structure of switching costs.

In order to de�ne the set of admissible management strategies of the production asset, we need

to introduce the functions:

δi(t) := (t+ δi)∧T, 1≤ i≤M .

Definition 1. A management strategy of the production asset is an F-adapted càdlàg pure jump

process {ξt, t∈ [0, T ]} with values in {1, . . . ,M}, with jump times (θn, n≥ 0) and states (ξn, n≥ 0),

such that, for all n≥ 0, δ̄ξn(θn)≤ θn+1. In this setting, we have:

ξt =
∑
n≥0

ξn1{θn≤t<θn+1} .

An admissible management strategy is such that N(ξ) := inf{n≥ 0, θn = T}−1<∞ a.s., i.e. which

is composed a.s. of a �nite number of switches. We denote by X0 the set of such admissible strategies.

Given a management strategy ξ ∈X0, we denote by Xt(ξ) the set of all admissible strategies ξ′ such

that ξ′ = ξ on [0, t].

We will also make use of the following notation. The set of all F-adapted stopping times with

values in [t, T ] will be denoted by Tt. Given a management strategy ξ ∈X0, we de�ne the sequence

(θ∗n := δξn(θn), n ≥ 0) of the switching times increased by the minimal times. We also de�ne the

sequence (C∗
n :=Cξn,ξn+1) of the switching costs.

Conditions (1)-(2) ensure that a management strategy ξ such that P(N(ξ))> 0 is either not possible

(presence of minimal times) or not optimal (presence of switching costs). This justi�es the choice

of the admissible set X0. Without loss of generality, we suppose that the power plant has just been
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switched to mode 1 at time 0 (θ0 = 0 and ξ0 = 1). Given a management strategy of the plant ξ ∈X0,

we de�ne its cumulated bene�t at time t∈ [0, T ]:

Bξ
t :=

∫ t

0

ψξu
u du−

∑
n≥1, θn≤t

Cξn−1,ξn .

Remark 1. The analysis of this paper can be easily extended to include a smooth transition

from one mode to the other, so as to account for the so-called ramp rates. It can also be extended

to include minimal times δi,j depending on both previous and current states.

3.3. Investment Strategies.

In addition to the production activity, the producer is allowed to invest continuously in the �nancial

market. We shall denote by πt the amount invested in the market at time t. By the usual self-

�nancing condition, the wealth process X is de�ned for any t∈ [0, T ] by:

Xx,π
t := x+

∫ t

0

N∑
i=1

πi
u

dSi
u

Si
u

= x+
∫ t

0

πu · (µudu+ΣudWu) ,

where x denotes the initial capital. In order to account for possible portfolio constraints, we assume

that the process π takes values in some given closed convex subset K of RN . We follow the de�nition

of Hu et al. (2005) of admissible investment strategies on the �nancial market.

Definition 2. An investment strategy is an F−predictableK-valued process π = {πt, 0≤ t≤ T}

with E
∫ T

0
|Σ∗

tπt|2 dt <∞ a.s. such that
{
e−ηX

0,π
τ : τ ∈ T0

}
is a uniformly integrable family. We denote

by A0 the collection of all such investment strategies. For τ ∈ T0 and π
0 ∈A0, we denote by Aτ (π0)

the subset of A0 consisting of all investment strategies π ∈ A0 such that π= π0 on [0, τ ].

Example 2. Incomplete market. Let K = {(u1, . . . , uN) ∈ RN , uk+1 = · · · = uN = 0}, for some

k ∈ {1, . . . ,N}. Then only the �rst k components of S represent prices of �nancial assets which can

be traded by the producer.

3.4. Utility Valuation of the Production Asset

The variable χ represents some terminal payo� associated with the presence of the power plant.

For instance, it may represent the dismantling cost of the power plant. Similarly, we introduce the
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random variable χ′ ∈ L∞ as the terminal payo� in the absence of the power plant, that may be

di�erent from χ. Let

V0(x) := sup
(ξ,π)∈X0×A0

E
[
U
(
Xx,π

T +Bξ
T +χ

)]
(3)

v0(x) := sup
π∈A0

E [U (Xx,π
T +χ′)] (4)

be the indirect utility function of the manager respectively in the presence and absence of the power

plant. Then, the utility valuation of the power plant is de�ned by:

p0(x) := sup{p≥ 0 : V0(x− p)≥ v0(x)} . (5)

It is the highest price the agent is ready to pay to buy the power plant. In the context of the

exponential utility, we can write:

v0(x) = −e−η(x+y0) and V0(x) = −e−η(x+Y
1
0) ,

where y0 and Y
1

0 are independent of the initial capital x. Then the value of the plant is given by:

p0 = Y
1

0− y0 . (6)

The main result of this paper provides a characterization of (y0, Y
1

0) by means of a coupled system

of re�ected Backward Stochastic Di�erential Equations.

4. A Veri�cation Result.

In this section we relate v0 and V0 to the solution of a coupled system of re�ected BSDEs.

4.1. Non-Linear g−Expectation

The analysis of this paper appeals to the notion of non-linear g-expectation introduced by Peng

(2003). Appendix A1 provides a quick review and a straightforward extension of this notion for a

quadratic generator g : Ω× [0, T ]×Rn −→ R, satisfying for all t∈ [0, T ]:

g(t,0) = 0, |g(t, z)| ≤ a0 + b0|z|2 and
∣∣∣∣∂g∂z (t, z)

∣∣∣∣≤ a1 + b1|z| a.s. , (7)
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for some constants a0, a1, b0, b1. For all bounded FT -measurable random variable ζ, consider the

following BSDE:

Yt = ζ −
∫ T

t

g(u,Zu)du−
∫ T

t

ZudWu . (8)

The existence of a unique solution (Y,Z)∈H∞
0 (R)×H2

0(RN) to this BSDE was proved by Kobylanski

(2000). The nonlinear g-expectation operator is de�ned by:

Eg
τ,T [ζ] := Yτ for every τ ∈ T0 and ζ ∈L∞(R) .

4.2. Optimal Investment Decision.

The main result of this section requires the following additional notations. For 1 ≤ i ≤ M , we

introduce the random functions:

gt(z) :=
η

2
|Σ∗

t z−Πt(Σ∗
t z))|

2 +Πt(Σ∗
t z) ·Πt(Σ−1

t µt) (9)

f i
t (z) := gt(z)−

1
2η

∣∣Πt(Σ−1
t µt)

∣∣2−ψi
t , (10)

where Πt(x) represents the orthogonal projection of x on the closed convex set Σ∗
tK, the image of

K by Σ∗
t . We then consider the BSDEs:

Y i
t = ζ −

∫ T

t

f i
u(Zi

u)du−
∫ T

t

Zi
u ·ΣudWu , (11)

for some ζ ∈ L∞(R). Since the random function g̃t(z) := gt

(
(Σ∗

t )
−1
z
)
is a quadratic generator

satisfying the conditions (7), and ψi, Σ, µ are bounded, existence and uniqueness of a solution

(Y i,Zi)∈H∞
0 (R)×H2

0(RN), with:

Y i
t = Eg

t,T

[
ζ +

∫ T

t

(
1
2η

∣∣Πu(Σ−1
u µu)

∣∣2 +ψi
u

)
du

]
,

follows from the general results of Appendix A. We are then able to relate the value function v0 to

the initial value of this BSDE:

Proposition 1 (Hu et al. (2005)). The indirect utility function of the manager in the absence

of the production asset is given by:

v0(x) = − exp
(
−ηx− ηEg

0,T

[
χ′ +

1
2η

∫ T

0

∣∣Πt(Σ−1
t µt)

∣∣2 dt]) .
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4.3. Optimal Management-Investment Decision.

This section relates the value function V0 to the initial value of a system of re�ected BSDEs. We

consider the coupled system of Re�ected BSDEs (RBSDE), for t∈ [0, T ] and 1≤ i≤M :

Y i
t = χ−

∫ T

t

f i
u

(
Zi

u

)
du−

∫ T

t

Zi
u ·ΣudWu +

(
Ki

T −Ki
t

)
(12)

Y i
t ≥ max

j 6=i

{
Y

j

t −Ci,j

}
(13)

Y
i

t = Eg

t,δi(t)

[
Y i

δi(t)
+
∫ δi(t)

t

(
1
2η

∣∣Πu(Σ−1
u µu)

∣∣2 +ψi
u

)
du

]
(14)

Ki ∈ J (R) ,
∫ T

0

(
Y i

t −max
j 6=i

{
Y

j

t −Ci,j

})
dKi

t = 0 . (15)

Given Y
1−i

, (12)-(13)-(15) de�ne the process Y i as the value function of the optimal investment-

management problem when there is no constraint on the �rst switching time. Given Y i, the process

Y
i
de�nes the value of the optimal investment problem with time duration δi, corresponding to

the switching delay constraint. The existence and uniqueness of a solution (Y i,Zi,Ki) ∈H∞
0 (R)×

H2
0(RN)×J (R), 1≤ i≤M to the system of coupled RBSDEs (12)-(13)-(14)-(15) will be discussed

in the subsequent section.

The main result of this section provides a characterization of the value function V0, de�ned in

(3), in terms of the component Y
1
of the solution of the RBSDEs (12)-(13)-(14)-(15). We recall

the assumption made previously that the plant has just been switched to mode 1 at time 0, which

explains why the following proposition involves the component Y
1
.

Proposition 2. Suppose that there exists a solution to (12)-(13)-(14)-(15), then the value of the

optimal problem (3) is given by:

V0(x) =U
(
x+Y

1

0

)
.

Moreover, de�ne the management strategy ξ̂ by θ̂0 = 0, ξ̂0 = 1, and:

θ̂n+1 = inf
{
t≥ δξ̂n(θ̂n), Y ξ̂n

t = max
j 6=ξ̂n

{
Y

j

t −Cξ̂n,j

}}
∧T

ξ̂n+1 = inf
{
j 6= ξ̂n, Y ξ̂n

θ̂n+1
= Y

j

θ̂n+1
−Cξ̂n,j

}
,
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for n≥ 0, 1≤ i≤M , and the investment strategy π̂ by:

π̂t = (Σ∗
t )−1Πt

(
(ηΣt)−1µt−Σ∗

tZ
ξ̂n

t

)
for θ̂n ≤ t < δξ̂n(θ̂n)

π̂t = (Σ∗
t )−1Πt

(
(ηΣt)−1µt−Σ∗

tZ
ξ̂n

t

)
for δξ̂n(θ̂n)≤ t < θ̂n+1 ,

for 1≤ i≤M and n≥ 0. Then (ξ̂, π̂) de�nes an optimal management-investment strategy.

Proof. See Appendix B. �

As a straightforward corollary, we obtain a characterization of the power plant value p0.

Corollary 1. The utility indi�erence price of the production asset is given by:

p0 = Y
1

0−E
g
0,T

[
ζ +

1
2η

∫ T

0

∣∣Πt(Σ−1
t µt)

∣∣2 dt] .
5. Existence of a Solution of the RBSDE System

To prove the existence of a solution of the system of RBSDEs, we adapt the method developed in

Hamadène and Jeanblanc (2005). We de�ne the sequences of processes Y i,n, Zi,n, Ki,n, n≥ 0, for

1≤ i≤M as follows. We start from:

Y i,0
t := Eg

t,T

[
χ+

∫ T

t

(
1
2η

∣∣Πu(Σ−1
u µu)

∣∣2 +ψi
u

)
du

]
. (16)

Given Y i,n−1, we compute Y
i,n−1

as:

Y
i,n−1

t = Eg

t,δi(t)

[
Y i,n−1

δi(t)
+
∫ δi(t)

t

(
1
2η

∣∣Πu(Σ−1
u µu)

∣∣2 +ψi
u

)
du

]
, (17)

and Y i,n,Zi,n,Ki,n as the solution of a re�ected BSDE:

Y i,n
t = χ−

∫ T

t

f i
u

(
Zi,n

u

)
du−

∫ T

t

Zi,n
u ·ΣudWu +

(
Ki,n

T −Ki,n
t

)
(18)

Y i,n
t ≥ max

j 6=i

{
Y

j,n−1

t −Ci,j

}
(19)

Ki,n ∈ J (R) and
∫ T

0

(
Y i,n

t −max
j 6=i

{
Y

j,n−1

t −Ci,j

})
dKi,n

t = 0 . (20)

We thus compute sequentially the processes Y i,n for all n. The existence of the triple

(Y i,n,Zi,n,Ki,n)∈H∞
0 (R)×H2

0(RN)×J (R) for each n follows from Kobylanski et al. (2002).

We shall give an interpretation of the processes Y i,n in terms of the value function of an optimal

control problem with n possible switches. Indeed Y i,0 de�ned by (16) corresponds to the maximal
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utility when no switch is allowed (cf Hu et al. (2005)). An optimal switch shall be decided when

a re�exion of the BSDE system occurs. After a switch from mode i to j, the plant is subject to

the minimal time constraint and only n− 1 possible switches remain. This provides an intuitive

explaination on how the sequence (Y i,n)n≥0 is built. To prove this result, let us introduce the

following notation. Let ξ ∈ X0, n,m ∈ N. We denote by X n,m(ξ) the set of management strategies

ξ′ ∈ Xθn(ξ) such that: N(ξ′) ≤ n+m. In words, X n,m
t (ξ) is the set of all admissible management

strategies in Xθn(ξ) which have less than m mode switches between θn and T .

Proposition 3. Let (ξ,π) be a pair of management-investment strategies in X0×A0. Then

U
(
X0,π +Bξ +Y

ξn,m
)

θn

= ess. sup
(ξ′,π′)∈Xn,m(ξ)×Aθn (π)

Eθn

[
U
(
X0,π′

T +Bξ′

T +χ
)]

.

Proof. See Appendix C. �

The process Y i,n can thus be seen as an approximation of Y i when the number of possible switches

is restricted to n. We then deduce the following corollary:

Corollary 2. For i= 1, . . . ,M , the sequences (Y i,n)n≥0 and (Y
i,n

)n≥0 are non-decreasing.

Proof. See Appendix C. �

From this monotonicity property we obtain the convergence of the processes Y i,n,Zi,n and Ki,n.

Proposition 4. The sequences of processes (Y i,n,Zi,n,Ki,n), n ≥ 0, converge uniformly to

processes (Ỹ i, Z̃i, K̃i) in H∞
0 (R)×H2

0(RN)×J (R). Moreover (Ỹ i, Z̃i, K̃i) is a solution of the coupled

system of BSDEs (12)-(13)-(14)-(15).

Proof. See Appendix C. �

6. The Complete Market Case

In this section, we verify that the utility indi�erence pricing rule is indeed an extension of the no-

arbitrage price in a frictionless market framework. To this end, we show that in a complete market

the power plant value does not depend on the risk aversion coe�cient η and that the no-arbitrage

pricing formula is obtained as a limiting case when production constraints vanish. The proof of the

following result, similar to that of Proposition 2 with no investment, is omitted.
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Proposition 5. If K = RN , the value of the power plant is given by:

p0 = sup
ξ∈X0

EQ∗ [Bξ
T +χ−χ′

]
,

where the equivalent martingale measure Q is given by its density:

dQ
dP

= exp
(
−
∫ T

0

Σ−1
t µt · dWt−

1
2

∫ T

0

∣∣Σ−1
t µt

∣∣2 dt) , (21)

Remark 2. When there are only 2 modes 1,2, the producer only faces switching costs and the

market is complete, we �nd the results of Hamadène and Jeanblanc (2005). In this case, if we

de�ne Ỹt := Y 1
t − Y 2

t and Z̃t := Z1
t −Z2

t , then the quadruple (Ỹ , Z̃,K1,K2) satis�es the following

doubly-re�ected BSDE with constant barriers:

Ỹt =−
∫ T

t

(
gu

(
Z̃u

)
−ψ1

u +ψ2
u

)
du−

∫ T

t

Z̃u ·ΣudWu +
(
K1

T −K1
t

)
−
(
K2

T −K2
t

)
.

Finally, we study the limiting case when the switching costs and delays are zero, i.e. δi =Ci,j = 0

for all i, j, and the market is complete. In this case, we shall prove that the value of the power

plant is given by the classical no-arbitrage pricing formula in complete markets, which can be easily

explained as follows. In the absence of production constraints and terminal payo�s (χ = χ′ = 0),

the producer would choose at each time t the production mode that gives the best bene�t rate and

would gain maxj ψ
j
t at each time t. The optimal management strategy is to have the plant switched

in mode i when ψi
t ≥ ψj

t , j 6= i. Then, the plant is equivalent to a �nancial option with payo�∫ T

0
maxj ψ

j
tdt at time T . We are thus expecting the value of the power plant to be the expectation

under the risk neutral measure of the above payo�.

Observe however that the above optimal management strategy is not in X0, as it exhibits an

in�nite number of switching times. We will then use the following strategy for the proof of our

limiting result. Set δi = 0 for 1≤ i≤M and consider identical positive switching costs Ci,j =C > 0,

i 6= j, in order to ensure the existence of an optimal management strategy in X0. We next prove

that the utility indi�erence value converges to the no-arbitrage price by sending C to zero.
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In order to emphasize the dependence of the variables on the switching costs, we will denote

by (Y i,C ,Zi,C ,Ki,C) the solution of the backward system (12)-(13)-(14)-(15) with switching costs

Ci,j =C, and by pC
0 the utility indi�erence value of the plant.

Proposition 6. Let K = RN , δi = 0, Ci,j =C > 0 for all i 6= j. Then

pC
0 −→ p0 := EQ

[∫ T

0

max
j
ψj

tdt+χ−χ′
]
, as C→ 0 ,

where Q is the equivalent martingale measure de�ned in (21).

Proof. The proof of this proposition is omitted and available under request. �

7. Relation with a PDE Obstacle Problem.

In this section, we consider a Markovian setting and suppose that χ = φ(ST ), µt = µ(t,St), Σt =

Σ(t,St), ψi
t = ψi(t,St) and f i

t (z) = f i(t,St, z). For t ∈ [0, T ], s ∈ RN , we denote by Ft := {F t
u, t ≤

u ≤ T} the natural �ltration of the Brownian motion W t
u := Wu −Wt, t ≤ u ≤ T . We denote

by (Y i,t,s,Zi,t,s,Ki,t,s) the solution of the BSDE system, adapted to Ft, when St = s. We de�ne

ui(t, s) := Y i,t,s
t and ui(t, s) := Y

i,t,s

t . Then, it follows from Kobylanski (2000) and Kobylanski et al.

(2002) that ui and ui are viscosity solutions of the following PDE system:

0 = min
{
ui−u1−i +C1−i,−Lui + f i

(
., .,

∂ui

∂s

)}
, on [0, T ]×RN and ui(T, s) = φ(s) ,

for 1≤ i≤M , and for all t0 ∈ [0, T ], ui(t0, s) =wi(t0, t0, s), where wi(t0, t, s) solves:

0 =−Lwi + f i

(
., .,

∂wi

∂s

)
, on [t0, δi(t0)]×RN and wi(t0, δi(t0), s) = ui(δi(t0), s) , (22)

for every �xed t0 ∈ [0, T ] and L is the Dynkin operator associated to the di�usion process S:

Lu(t, s) :=
∂u

∂t
(t, s)+µ(t, s)

∂u

∂s
(t, s)+

1
2
Tr

(
ΣΣ∗(t, s)

∂2u

∂s2
(t, s)

)
.

8. Numerical Implementation in a Complete Market

In this section, we discuss and implement several numerical schemes to solve the RBSDE or PDE

system and compute the value of a coal-�red power plant with two modes 0,1 in a complete market.



Porchet, Touzi, and Warin: Valuation of a Power Plant Under Production Constraints and Market Incompleteness

Article submitted to Management Science; manuscript no. MS-0001-1922.65 15

8.1. The BSDE-Based Numerical Scheme

We �x a discretization step ∆, such that T =N0∆ for some N0 ∈ N, and δi = κi∆. We denote by

(yi
n, z

i
n) (resp. (yi

n, z
i
n)) the approximation at time n∆ of the processes (Y i,Zi) (resp. (Y

i
,Z

i
)).

We adapt the Euler scheme for RBSDEs proposed in Bouchard and Touzi (2005) and consider the

following scheme, for 0≤ n<N0:

zi
n =

1
∆

(Σ∗
n∆)−1 En∆

[
yi

n+1

(
W(n+1)∆−Wn∆

)]
, yi

n = max
{
En∆[yi

n+1]−∆f i
n∆(zi

n), y1−i,κ1−i
n −C1−i

}
,

with terminal condition yi
N0

= ξ and, for 0≤ k≤ κi:

yi,k
N0

= ξ+
κi−k∑
l=1

∆
(

1
2η

∣∣Π(Σ−1µ)
∣∣2 +ψi

)
(N0−l)∆

, yi,0
n = yi

n +
κi∑

l=1

∆
(

1
2η

∣∣Π(Σ−1µ)
∣∣2 +ψi

)
(n−l)∆

zi,k
n =

1
∆

(Σ∗
n∆)−1 En∆

[
yi,k−1

n+1

(
W(n+1)∆−Wn∆

)]
, yi,k

n = En∆[yi,k−1
n+1 ]−∆gi

n∆(zi,k
n ) .

The main di�erence with Bouchard and Touzi (2005) is that, at each time n∆, we need to look

forward until time n∆ + δi in order to decide whether a mode switch is pro�table. We therefore

need to compute (an approximation of) the solution of BSDE (14). This is done in κi +1 steps and

justi�es the use of the vector (yi,k
n )0≤k≤κi

: at each time n, yi,k
n is the approximation of

Eg
n∆,(n+k)∆

[
Y i

(n+k)∆ +
κi∑

l=1

∆
(

1
2η

∣∣Π(Σ−1µ)
∣∣2 +ψi

)
(n+k−l)∆

]
.

The numerical approximation of the conditional expectation operator can be tackled by di�erent

methods: kernel regression methods Carrière (1996), projection methods Longsta� and Schwartz

(2001), quantization Bally et al. (2005), Malliavin calculus Bouchard and Touzi (2005). In this paper

we implement the projection-based method of Gobet et al. (2004).

8.2. The PDE-Based Numerical Scheme.

Regarding the PDE system, we denote by Di
n∆φ the solution of the PDE (22) at time n∆ when the

terminal condition at time (n+1)∆ is φ. We also denote by ui
n (resp. ui

n) the approximation at time

n∆ of the function ui (resp. ui). A natural numerical scheme for solving the PDE is: ui
N0

= φ, ui
n =

max
{
Di

n∆u
i
n+1 , u

1−i,κ1−i
n −C1−i

}
, and for 0 ≤ k ≤ κi, u

i,k
N0

= φ, ui,0
n = ui

n, u
i,k
n = Dn∆u

i,k−1
n+1 . The

di�erential operator can be approximated by classical methods. In our numerical implementation,

we use the �nite di�erences approximation.
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µF = 0.03 µG = 0.0003 σF = 0.1
σG = 0.01 a = 0.13 b = 0

δ0 = 24 h δ1 = 8 h T = 8760 h
C0 = 0 � C1 = 35530 � H = 0.5 ton/MWh

Table 1 Example 1 - Price process parameters and power plant characteristics.

8.3. Valuation of a Coal-Fired Power Plant.

We consider the example of a coal-�red power plant. The process St = (Ft(T ),Gt(T )) is de�ned by:

dFt(T )
Ft(T )

= µF e
−a(T−t)dt+σF e

−a(T−t)dW 1
t ,

dGt(T )
Gt(T )

= µGe
−b(T−t)dt+σGe

−b(T−t)dW 2
t .

Here, Ft(T ) is the forward price of electricity at time t with delivery at time T and Gt(T ) is the

forward price of coal at time t with delivery at time T . This model is the well known one-factor

model used in energy markets (see Clewlow and Strickland (2000)). We suppose that there is no

correlation between the two assets, which is approximately the case for coal. We also suppose that

the spot prices of electricity and gas at time t are de�ned by Ft(t) and Gt(t). In this context, the spot

prices can be expressed in terms of the forward prices: Ft(t) = φF (t,Ft(T )) and Gt(t) = φG(t,Gt(T ))

, where φF and φG are deterministic functions de�ned by:

φF (t,α) = F0(t) exp
(

1
2
σ2

F

∫ t

0

e−a(t−u)
(
e−a(T−u)− e−a(t−u)

)
du

)[
α

F0(T )

]ea(T−t)

φG(t, β) = G0(t) exp
(

1
2
σ2

G

∫ t

0

e−b(t−u)
(
e−b(T−u)− e−b(t−u)

)
du

)[
β

G0(T )

]eb(T−t)

,

and F0(.), G0(.) are initial deterministic forward curves. The power plant can be in two modes: on

(denoted 1) or o� (denoted 0). The instantaneous rates of bene�t of the power plant at time t are

given by: ψ0
t := 0, ψ1

t := q (Ft(t)−HGt(t)). In what follows, we make use of the notation C0 :=C0,1

and C1 :=C1,0. The terminal payo�s χ and χ′ are set to 0. We compute the power plant value on

two examples. The �rst example is a toy example described in Table 1. The price process parameters

roughly correspond to data from 2004, with a constant electricity future curve of 20 �/MWh, a

constant coal future curve of 30 �/ton, and a constant Euro/Dollar exchange rate of 1. Parameters



Porchet, Touzi, and Warin: Valuation of a Power Plant Under Production Constraints and Market Incompleteness

Article submitted to Management Science; manuscript no. MS-0001-1922.65 17

µF = 0.03 µG = 0.0003 σF = 0.07
σG = 0.011 a = 0.013 b = 0.0005

δ0 = 24 h δ1 = 8 h T = 8760 h
C0 = 0 � C1 = 35530 � H = 0.3627 ton/MWh

Table 2 Example 2 - Price process parameters and power plant characteristics.

of the power plant are close to those of a real power plant. This toy example has been designed to

isolate the impact of the frictions on the power plant value.

The second example corresponds to a similar power plant with a lower and more realistic heat

rate, and a constant maintenance cost of 10000 �/day. The price process parameters correspond

to data from 2006 in France, where higher electricity prices have been observed. The Euro/Dollar

rate for 2006 was around 1.2. With these values of the parameters, we observed almost no impact of

the constraints on the power plant value. Indeed, if electricity price is much higher than coal price,

it is never optimal to shut down the power plant. Recall that the plant is assumed to be turned

o� at time 0. Then, the optimal managing strategy is to wait until time δ0 when a mode switch

is allowed, and keep on producing until T . The conclusion of this example is that constraints have

little impact if the plant is highly pro�table. In order to have signi�cant results, we choose to set

the Euro/Dollar rate at 0.8 for this example . The reference risk aversion coe�cient is taken equal

to η = 1 for both examples. In agreement with the results of Section 6, we observe that the power

plant value does not depend on η. Results for both examples are shown in Subsection 8.5.

8.4. The Corresponding BSDE and PDE.

The drivers f i associated to the above problem are given by:

f i
t (z) = µF e

−a(T−t)z1 +µGe
−b(T−t)z2−

1
2η

((
µF

σF

)2

+
(
µG

σG

)2
)
−ψi

t .

and the Dynkin operator by:

Lu(t,α,β) = ut(t,α,β)+
1
2
α2σ2

F e
−2a(T−t) +µF e

−a(T−t)uα(t,α,β)+µGe
−b(T−t)uβ(t,α,β)

+uαα(t,α,β)+
1
2
β2σ2

Ge
−2b(T−t)uββ(t,α,β) .
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Figure 1 Example 1 - Impact of H (left) and T (right).

For the purpose of our numerical implementation, we �rst proceed to the change of variable:

ξt =
∫ t

0

σF e
−a(t−u)(dW 1

t +
µF

σF

dt) , ζt =
∫ t

0

σGe
−b(t−u)(dW 2

t +
µG

σG

dt) ,

which avoids dealing with exponential coe�cients of the form e−a(T−t), and allows the use of Brown-

ian bridge techniques. Regarding the BSDE approximation, we choose to follow the methodology

developed by Gobet et al. (2004) with an 8× 8 grid, linear approximation inside each domain, and

25600 simulations. The time step is set to 1 hour. For the PDE, we approximate the operator Di

by a Crank-Nicholson scheme, within a domain [−5,5]× [−5,5] in (ξ, ζ). In each direction, we mesh

the interval with 100 steps. Time step is 1 hour.

8.5. Numerical Results in a Complete Market

Example 1. The coal-�red power plant price in the presence of production constraints is pc =

15.91 106
�, while the price in the absence of production constraints (i.e. δ0 = δ1 = C0 = C1 = 0)

is pnc = 21.17 106
�. In the context of this example, we observe that the presence of production

constraints reduces the power plant value by 25% over one year, which is very signi�cant.

To highlight the contribution of the various frictions, we vary each parameter separately, starting

from two reference con�gurations, corresponding respectively to pc and pnc. Figure 1-left shows the

variations of the value (in % of pnc) with respect to the heat rate H (left) and the horizon T (right).

Each time we show the value without constraints (dotted lines) and with constraints (solid lines),
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computed both by PDE (diamonds) and BSDE (circles). This �gure con�rms the decrease of the

value with the heat rate H, as expected. PDE and BSDE computations lead to very close results in

both cases. We also observe that the value with constraints is always smaller than the no-constraint

value. On the other hand, the value is increasing with the horizon T (Figure 1-right), as expected,

almost linearly in both cases, with a larger slope in the absence of constraints.
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Figure 2 Example 1 - Impact of C0 (left) and C1 (right).
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Figure 3 Example 1 - Impact of δ0 (left) and δ1 (right).

The power plant value is also decreasing with the shut-down and start-up costs C0 and C1, as

expected (see �gures 2-left and 2-right). We notice that variations of the switching costs have a

more limited impact on the value in the presence of other constraints.
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We also observe a decrease of the value with the start-up and shut-down minimal times δ1 and

δ0 (see respectively �gures 3-left and 3-right). Nonetheless, the switching delays have less impact

on the value, especially for small values where the curves present an horizontal tangent. We also

observe that the impact of δ0 is larger than that of δ1 in the presence of other constraints. This can

be explained by the large di�erence between C0 and C1 and the fact that ψ0 = 0. Thus there is a

strong asymmetry between modes on and o�. High start-up costs limit the number of switches and

thus increase the time between two switches, which limits the impact of the switching delays.

Example 2. The coal-�red power plant value in the presence of production constraints is pc =

119.3 106
�, while the price in the absence of production constraints (i.e. δ0 = δ1 =C0 =C1 = 0 and

no maintenance cost) is pnc = 125.9 106
�. In this case, the presence of production constraints only

reduces the power plant value by 5% over one year. We also observe that the value of the power

plant is more than 10 times higher than in Example 1. As we highlighted above, the higher the

pro�tability of the power plant, the lower the impact of the constraints on the value.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

H

V
al

ue
 (

%
 o

f 
p nc

)

Impact of H on the value

No Const. PDE
No Const. BSDE
Const. PDE
Const. BSDE

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

140

160

180

T (day)

V
al

ue
 (

%
 o

f 
p nc

)

Impact of T on the value

No Const. PDE
No Const. BSDE
Const. PDE
Const. BSDE

Figure 4 Example 2 - Impact of H (left) and T (right).

Figures 4 to 6 show the variations of the value with the parameters. These variations are similar

to those of Example 1, with a lower magnitude. We observe here that the BSDE method converges

more slowly than in Example 1, but still provides very close results to those of the PDE method.

In terms of computational time for this 2-dimensional example, the PDE method is much faster

than the BSDE. Table 3 shows some time comparisons (in minutes) referring to the computation
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Figure 5 Example 2 - Impact of C0 (left) and C1 (right).
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Figure 6 Example 2 - Impact of δ0 (left) and δ1 (right).

of the value with constraints for di�erent time horizons. As expected, computation times are linear

with the horizon. In higher dimension, the �nite di�erences method for PDEs becomes untractable.

Horizon T (day) 83 208 365 500 750
PDE (CPU mn) 14 20 35 62 79
BSDE (CPU mn) 99 230 302 477 718

Table 3 Comparison of time performances between the PDE and BSDE algorithms.

On the other hand, BSDE methods do not depend so heavily on dimension, and we expect them to

become more e�cient when dimension increases.
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9. Numerical Implementation in an Incomplete Market.

9.1. Source of Incompleteness.

In this section, we present a simple example of incomplete market where the spot price of elec-

tricity at time t is no longer given by Ft(t). Due to non-storability, standardization of forward

contracts, illiquidity and a restricted number of actors in electricity markets, large discrepancies

can be observed between the last quoted forward price for a given maturity and the spot price

at that maturity. This aspect is discussed for example in Skantze and Ilic (2000), where a general

model is proposed for the relationship between the forward price Ft(T ) and the spot price PT :

Ft(T ) = Ψ(Et[PT ],Vart[PT ], εt), where Vart[ST ] is the conditional variance of PT and ε is a random

disturbance. In particular, Ft(t) = Ψ(Pt,0, εt) is not necessarily equal to Pt.

To take into account this speci�city, we choose the simplest model: Pt := Ft(t)+εt, where εt is some

exogenous, non-tradable, stochastic shock with dynamics:

dεt = −κεtdt+ γdW 3
t ,

and W 3 is independent of (W 1,W 2). The instantaneous rate of bene�t in production mode is now

given by: ψ1
t := q (Ft(t)+ εt−HGt(t)). Since the shock ε does not correspond to any tradable asset,

the market is incomplete and the RBSDE system is non-linear. A quadratic term in Zi,3 appears:

dY i
t =

(
ηγ2

2
(Zi,3

t )2 +µF e
−a(T−t)Zi,1

t +µGe
−b(T−t)Zi,2

t − 1
2η

∣∣Σ−1
t µt

∣∣2−ψi
t

)
dt

+σF e
−a(T−t)Zi,1

t dW 1
t +σGe

−b(T−t)Zi,2
t dW 2

t + γZi,3
t dW 3

t − dKi
t .

We restrict to the case where there are no delays: δ0 = δ1 = 0, and T is equal to 6 months. The

characteristics of the power plant and the price process are those of Example 2, except that we set

the drifts to µF = µG = 0. This allows us to use a smaller domain for the PDE mesh. Parameter κ

is set to 0.02. We focus our analysis on the impact of η and γ on the value.

9.2. Numerical Scheme and Results.

No theoretical analysis of the approximation of BSDEs with quadratic generator is available in the

literature. A consistency result can be obtained, following the lines of Bouchard and Touzi (2005),
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by approximating the quadratic generator by a sequence of Lipschitz functions. However, the rate

of convergence of such an approximation method is di�cult to obtain. We tested the numerical

convergence of a direct Monte Carlo computation via the Gobet-Lemor-Warin method, as in the

complete market case, but we were unsuccessful in obtaining satisfactory results.

In the particular case where the generator is a second-order polynomial in Z, which is the case in

this article, it is possible to transform the quadratic BSDE into a linear Forward-Backward SDE by

means of the Girsanov theorem. The methodology developed by Delarue and Menozzi (2006) can

then be followed and provides both a numerical scheme and a convergence result for this scheme.

Another approach, developed by Chaumont et al. (2005), uses the connection between BSDEs and

PDEs. They introduced a �nite di�erences scheme for the quadratic PDE and proved its convergence.

FBSDE algorithm. We �rst applied Delarue-Menozzi's algorithm for Forward Backward SDEs.

Since the generator of the BSDE is a second order polynomial in Z, an application of Girsanov

Theorem allows us to rewrite the quadratic BSDE into a linear coupled Forward Backward SDE:

dεt =
(
−κεt−

ηγ2

2
Zi,3

t

)
dt+ γdW

3

t ,

dY i
t =

(
µF e

−a(T−t)Zi,1
t +µGe

−b(T−t)Zi,2
t − 1

2η

∣∣Σ−1
t µt

∣∣2−ψi
t

)
dt

+σF e
−a(T−t)Zi,1

t dW 1
t +σGe

−b(T−t)Zi,2
t dW 2

t + γZi,3
t dW

3

t − dKi
t ,

where dW
3

t := dW 3
t + ηγ

2
Zi,3

t dt, and the other components of the forward process are unchanged.

Numerical methods are available for these equations in Delarue and Menozzi (2006). We observed

that the computational time is very high in dimension 3. As an illustration, we computed the BSDE

associated to the "on" mode (i.e. same BSDE as (Y 1,Z1) with no re�exion) over an horizon of 4

days. We obtain an initial value of 530000 (domain = (0.5, 0.5, 0.5), space step = (3.125E-3,3.125

E-3,3.125E-3), time step = 1 hour), compared to the PDE result 527300 (domain =(1,1,2), space

step = (0.05,0.05,0.05), time step = 1/100 hour). The FBSDE algorithm thus converges to the PDE

value. Nevertheless, the computational time for this example is 16 hours for the BSDE against 26

mn for the PDE.
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PDE algorithm. We also solved the non-linear PDE using the same scheme as Chaumont et al.

(2005). This scheme is totally explicit and imposes very strong Courant-Friedrichs-Lewy conditions.

We solved the PDE on a domain [−1,1]× [−1,1] in (ξ, ζ) and [−2,2] in ε, meshed by 40× 40× 80

steps. The time step is taken to 1/100 hour (=36 sec!). This is why we only computed the power

plant value over an horizon of 6 months. Computational time for this example was in the range of

1 week. An implicit version of this scheme can be implemented but we did not implement it.

We are then able to study the impact of the parameters γ and η on the value. The results are shown

in Figure 7. We observe a decrease of the value with η (Figure 7-left, the value is expressed in % of
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Figure 7 Impact of η (left) and γ (right) on the value in % of the value in complete market.

the value in complete market, i.e. when γ = 0), which is natural since we deal with a buying price.

On the other hand, as γ increases, the power plant value decreases and converges to the complete

market price when γ tends to 0. We �nally conclude that the real option value can be impacted by

a 25 % decrease in the presence of a non-traded uncertainty.

10. Conclusion.

Utility indi�erence provides a nice framework for the valuation of physical assets in incomplete

markets. In a complete market, this methodology leads to the usual no-arbitrage value, and is thus

an extension of the arbitrage free valuation method. This method takes into account the agent's

preference via a utility function and, from this point of view, is more satisfactory than the discount
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rate ρ introduced by Dixit and Pindyck (1994), which has a poor economic interpretation. Indeed,

a discount rate reveals the agent's preference over time but not really over risk. In our setting, the

exponential utility is parameterized by a single coe�cient η and may thus not be more di�cult to

calibrate than the discount rate ρ in the methodology of Dixit and Pindyck (1994).

Nevertheless, this methodology has two main drawbacks. The �rst one is the computational complex-

ity of the utility maximization problems in incomplete markets, as we saw in the above paragraph.

The second is the non-linearity of the pricing rule with respect to the payo�. If the agent owns a

portfolio of physical assets, the value of the portfolio is not the sum of the assets values. The value

of a power plant is impacted by the presence of other assets (physical or �nancial) in the agent's

portfolio. Rigourously, the agent should compute the utility indi�erence value of its whole portfolio

of assets, implying the resolution of a hard multi-asset commitment problem.

Appendix A: Properties of the non-linear g-expectation.

Proposition 7. Let τ be an arbitrary stopping time in T0. Then:

(i) Eg
τ,T [ζ] ≤ Eg

τ,T [ζ ′] a.s., whenever ζ ≤ ζ ′ a.s. (Monotonicity)

(ii) Eg
T,T [ζ] = ζ

(iii) Eg
τ,T [1Aζ] = 1AEg

τ,T [ζ] a.s. for every A∈Ft (0-1 law).

Proof. (i) follows from the comparison theorem for quadratic BSDEs (cf. Kobylanski (2000)). (ii) is trivial.

(iii) Multiplying both sides of (8) by 1A, we see that:

1AYt = 1Aζ −
∫ T

t

g(u,1AZu)du−
∫ T

t

1AZudWu ,

where we used the fact that g(t,0) = 0 a.s. Hence (Y 1A,Z1A) is a solution of the BSDE with terminal

condition ζ1A, and therefore Eg
τ,T [1Aζ] = 1AEg

τ,T [ζ]. �

By following the lines of the arguments of Peng, it can be shown that the family {Eg
τ,T [ζ], τ ∈ T0} can be

aggregated by a càdlàg adapted process {Eg
t,T [ζ], 0≤ t≤ T} in the sense that Eg

τ,T [ζ] = Eg
t,T [ζ] a.s. on {τ = t}.

For later use, we isolate the following general result on quadratic BSDEs.

Lemma 1. The process
{∫ t

0
ZsdWs, t∈ [0, T ]

}
is a BMO martingale (see Hu et al. (2005) for the de�nition

of a BMO martingale).
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Proof. Since Y ∈H∞
0 (R), we can �nd y such that |Yt|< y, ∀t≤ T . Following Kobylanski (2000), we de�ne

the function Φ(x) := e2b0y

2b0
(e2b0y − e−2b0x)−x− y for |x| ≤ y and we observe that:

Φ≥ 0 , Φ′ ≥ 0 , Φ∈C2([−y, y],R) and
1
2
Φ′′ + b0Φ′ + b0 = 0 .

Let τ be an arbitrary stopping time valued in [0, T ]. Since (Y,Z)∈H∞(R)×H2(Rn), it follows that:

Eτ [Φ (YT )−Φ(Yτ )] = Eτ

[∫ T

τ

(
1
2
Φ′′(Yt)|Zt|2 +Φ′(Yt)g(t,Zt)

)
dt

]
,

by application of Itô's lemma. Since g (t, z)≤ a0 + b0|z|2, for some constants a0, b0, this provides:

Eτ [Φ (YT )−Φ(Yτ )] ≤ Eτ

[∫ T

τ

(
1
2
Φ′′ + b0Φ′

)
(Yt)|Zt|2dt

]
+ a0Eτ

[∫ T

τ

Φ′(Yt)dt
]

≤ −b0Eτ

[∫ T

τ

|Zt|2dt
]

+ a0Eτ

[∫ T

τ

Φ′(Yt)dt
]
.

By the boundedness of Y and the continuity of Φ and Φ′, we deduce the existence of a constant c0 such that:

Eτ

[∫ T

τ

|Zt|2dt
]
≤ c0 .

Since c0 does not depend on the arbitrary stopping time τ , this provides the required result. �

Appendix B: Proof of Proposition 2

Let n ∈N and (ξ,π) ∈ X0 ×A0. We now use a veri�cation argument as in El Karoui et al. (1997a) and Hu

et al. (2005). De�ne the family of processes:

Rn,ξ,π
t (ξ′, π′) := U

(
X0,π′

t +Bξ′

t +Y ξn

t

)
, t∈ [0, T ] for (ξ′, π′)∈Xθn

(ξ)×Aθn
(π) . (23)

For the sake of simplicity, we will simply write Rn,ξ,π
t :=Rn,ξ,π

t (ξ′, π′) whenever t≤ θn or whenever the latter

quantity does not depend on (ξ′, π′). Observe that, since ψi and Y i are bounded, the process Rn,ξ,π(ξ′, π′) is

of class D and is thus well de�ned and integrable. We start with the following lemma:

Lemma 2. Assume that the coupled system of RBSDEs (12)-(13)-(14)-(15) has a solution with bounded

processes Y i. Let n∈N, (ξ,π)∈X0×A0 be �xed.

(i) For every (ξ′, π′)∈Xθ∗n
(ξ)×Aθ∗n

(π), the process
{
Rn,ξ,π

t (ξ′, π′), θ∗n ≤ t≤ θ′n+1

}
is a super-martingale and:

Eθ∗n

[
Rn,ξ,π

θ′
n+1

(ξ′, π′)
]
≤ eηC′∗

n Rn,ξ,π
θ∗n

. (24)

(ii) Let (ξ̂, π̂)∈Xθ∗n
(ξ)×Aθ∗n

(π) such that:

θ̂n+1 := inf
{
t≥ θ∗n, dKξn

t > 0
}
∧T (25)

π̂t := π0
t 1[0,θ∗n)(t) + (Σ∗

t )
−1Πt

[
(ηΣt)−1µt−Σ∗

tZ
ξn

t

]
1[θ∗n,θ̂n+1](t) . (26)

Then, the process
{
Rn,ξ,π(ξ̂, π̂), θ∗n ≤ t < θ̂n+1

}
is a martingale and:

Eθ∗n

[
Rn,ξ,π

θ̂n+1
(ξ̂, π̂)

]
= eηC′∗

n Rn,ξ,π
θ∗n

.
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Proof. (i) Since the processes Y i, ψi are bounded, and π′ ∈ A0, we only need to check that the process

Rn,ξ,π(ξ′, π′) is a local super-martingale on [θ∗n, θ
′
n+1]. On this interval, we can decompose this process into:

Rn,ξ,π
t (ξ′, π′) = Rn,ξ,π

θ∗n
Mn,π

t (π′)An,ξ,π
t (ξ′, π′) ,

where Mn,π
t (π′) is a local martingale de�ned by Mn,π

θ∗n
(π′) = 1,

dMn,π
t (π′)

Mn,π
t (π′)

= −η(π′t +Zξn

t ) ·ΣtdWt ,

and An,ξ,π(ξ′, π′) is a bounded variation process de�ned by An,ξ,π
θ∗n

(ξ′, π′) = 1 and

An,ξ,π
t (ξ′, π′)

An,ξ,π
t (ξ′, π′)

=
(
−ηf ξn

t (Zξn

t )− ηπ′t ·µt +
η2

2

∣∣Σ∗
t

(
π′t +Zξn

t

)∣∣2)dt− ηdBξ′

t + ηdKξn

t .

Observing that dBξ′

t =ψξn

t dt−C ′∗
n 1{t=θ′

n+1} for θ
∗
n ≤ t≤ θ′n+1, that K

ξn
is non-decreasing, and that:

f i
t (Z

i
t) = inf

π∈K
−ψi

t −π ·µt +
η

2

∣∣Σ∗
t

(
π+Zi

t

)∣∣2 , (27)

for all 1≤ i≤M , we deduce that An,ξ,π(ξ′, π′) is a non-decreasing bounded variation process on [θ∗n, θ
′
n+1].

Therefore Rn,ξ,π(ξ′, π′) is a local super-martingale, and dAn,ξ,π

θ′
n+1

(ξ′, π′)≥ ηC ′∗
n A

n,ξ,π

θ′
n+1

(ξ′, π′) implies (24).

(ii) a) In this step, we show that Rn,ξ,π(ξ̂, π̂) is a martingale on [θ∗n, θ̂n+1). Observe that the process π̂t de�ned

by (25) is the (unique) minimizer of the problem (27). From this and the de�nition of θ̂n+1, A
n,ξ,π
t (ξ̂, π̂) =

An,ξ,π
θ∗n

for t ∈ [θ∗n, θ̂n+1). Then Rn,ξ,π
t (ξ′, π′) = Rn,ξ,π

θ∗n
Mn,π

t (π′)An,ξ,π
θ∗n

is a local martingale. By Lemma 1, it

follows that the process
∫ .

0
Zi

t ·ΣtdWt is a BMOmartingale, for all 1≤ i≤M . In order to show that Rn,ξ,π(τ̂ , π̂)

is a martingale on [θ∗n, θ̂n+1), it is su�cient to prove that the process
∫ .

0
π̂t ·ΣtdW

1
t is a also a BMO martingale,

as it is proved in Hu et al. (2005). Observe that, for t∈ [θ∗n, θ̂n+1],

|Σ∗
t π̂t|2 =

∣∣Πt

(
η−1Σ−1

t µt−Σ∗
tZ

ξn

t

)∣∣2 ≤ 2η−2
∣∣Πt

(
Σ−1

t µt

)∣∣2 +2
∣∣Πt

(
Σ∗

tZ
ξn

t

)∣∣2 .

We then deduce that, for all stopping time τ with values in [θ∗n, θ̂n+1),

E
[∫ T

τ

|Σ∗
t π̂t|2 dt

∣∣∣∣Fτ

]
≤ c1 +2E

[∫ T

τ

∣∣Πt

(
Σ∗

tZ
ξn

t

)∣∣2 dt∣∣∣∣Fτ

]
≤ c1 +2c0 ,

for some constant c1. Since the latter bound does not depend on the arbitrary stopping time τ , this shows

that the process
∫ .

0
π̂t ·ΣtdWt is a BMO martingale on [θ∗n, θ̂n+1].

(b) We now prove that π̂ is in A0. On [0, θ∗n], π̂ is equal to π0 ∈ A0. The BMO martingale property of∫ .

0
π̂t ·ΣtdWt on [θ∗n, θ̂n+1] implies that E

[∫ θ̂n+1

θ∗n
|Σ∗

t π̂t|2 dt
]
<∞, and therefore E

[∫ T

0
|Σ∗

t π̂t|2 dt
]
<∞. Using

now the BMO martingale property of
∫ .

0
Z

ξn

t · ΣtdWt, we prove that Mn,π(π̂) is a uniformly integrable

martingale on [θ∗n, θ̂n+1]. As An,ξ,π(ξ̂, π̂) is bounded on [θ∗n, θ̂n+1], Rn,ξ,π(ξ̂, π̂) is a uniformly integrable family

on [θ∗n, θ̂n+1], and so is e−ηX
0,π̂
t . Hence π̂ is an admissible portfolio.

(c) We complete the proof by noticing that at time θ̂n+1: A
n,ξ,π

θ̂n+1
(ξ̂, π̂) = eηC′∗

n An,ξ,π
θ∗n

. �
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We then deduce the proposition:

Proposition 8. Let n∈N, (ξ,π)∈X0×A0 be �xed. Then we have:

ess. sup
(ξ′,π′)∈Xθ∗n

(ξ)×Aθ∗n
(π)

Eθ∗n

[
U
(
X0,π′

+Bξ′ +Y
ξ′n+1)

θ′
n+1

]
= Rn,ξ,π

θ∗n
.

Proof. Let (ξ′, π′)∈Xθ∗n
(ξ)×Aθ∗n

(π). Then, Y
j

θ′
n+1

≤Cξn,j +Y ξn

θ′
n+1

for all j 6= ξn, together with the super-

martingale property of Rn,ξ,π(ξ′, π′), yield:

Eθ∗n

[
U
(
X0,π′

+Bξ′ +Y
ξ′n+1)

θ′
n+1

]
≤ Eθ∗n

[
U
(
X0,π′

+Bξ′ +C ′∗
n +Y ξn)

θ′
n+1

]
≤ Eθ∗n

[
e−ηC′∗

n Rn,ξ,π

θ′
n+1

(ξ′, π′)
]

≤ Rn,ξ,π
θ∗n

.

(28)

Thus,

ess. sup
(ξ′,π′)∈Xθ∗n

(ξ)×Aθ∗n
(π)

Eθ∗n

[
U
(
X0,π′

+Bξ′ +Y
ξ′n+1)

θ′
n+1

]
≤ Rn,ξ,π

θ∗n
.

The converse inequality is obtained by observing that (28) is in fact an equality for the choice of a pair (ξ̂, π̂)

characterized in the previous lemma. �

We can then turn to the proof of Proposition 2:

Proof of Proposition 2. Since V0(x) = e−ηxV0(0), we only deal with the case of a zero initial capital. Let

(ξ,π) be a pair of management-investment strategies in X0 × A0. Results from Hu et al. (2005) to the

processes Y
i
, 1≤ i≤M , on intervals of the form [θn, θ

∗
n] allow us to derive the following properties:

ess. sup
(ξ′,π′)∈Xθn (ξ)×Aθn (π)

Eθn

[
Rn,ξ,π

θ∗n
(ξ′, π′)

]
= Rn,ξ,π

θn
,

the argument of the supremum depending only on π′ and where the supremum is attained for π′ = π̂. Using

this result together with Lemma 2 we get:

Eθ∗n

[
U
(
X0,π +Bξ +Y

ξn+1)
θn+1

]
≤ U

(
X0,π +Bξ +Y ξn)

θ∗n
,

thus

Eθn

[
U
(
X0,π +Bξ +Y

ξn+1)
θn+1

]
≤ U

(
X0,π +Bξ +Y

ξn)
θn

. (29)

Using the fact that ξ has a �nite number of switches almost surely (N(ξ) <∞ a.s.), a direct iteration of

these inequalities implies:

E
[
U
(
X0,π

T +Bξ
T +χ

)]
≤U

(
X0,π

θ0
+Bξ

θ0
+Y

1

θ0

)
=U(Y

1

0) , (30)
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We therefore get V0(0) ≤ −e−ηY
1
0 . The converse inequality is obtained by observing that, �rst, (29) is in

fact an equality for the choice of the management-investment strategy (ξ̂, π̂). Second, (ξ̂, π̂) is indeed an

admissible strategy since:

E
[
U
(
X0,π +Bξ +Y

ξn+1)
θn+1

]
= U

(
Y

1

0

)
,

showing that P(N(ξ̂) =∞)> 0 is not possible. �

Appendix C: Proofs of Section 5

Proof of Proposition 3. Consider the sequence of management strategy ξ̂ ∈Xθn(ξ) de�ned by:

θ̂k+1 = inf
{
t≥ δξ̂k

(θ̂k), Y ξ̂k,n+m−k
t = max

j 6=ξ̂k

{
Y

j,n+m−k−1

t −Cξ̂k,j

}}
ξ̂k+1 = min

{
j 6= ξ̂k, Y ξ̂k,n+m−k

θ̂k+1
= Y

j,n+m−k−1

θ̂k+1
−Cξ̂k,j

}
for n≤ k≤ n+m− 1 and θ̂n+m+1 = T . Consider also the investment strategy π̂ ∈Aθn

(ξ) de�ned as:

π̂t = (Σ∗
t )
−1Πt

(
(ηΣt)−1µt−Σ∗

tZ
ξ̂k,n+m−k
t

)
for θ̂∗k ≤ t≤ θ̂k+1

π̂t = (Σ∗
t )
−1Πt

(
(ηΣt)−1µt−Σ∗

tZ
ξ̂k,n+m−k

t

)
for θ̂k ≤ t≤ θ̂∗k .

Following the same argument as in Section B, we prove that the processes U(X0,π′
+Bξ′ +Y

ξ′k,n+m−k
) and

U(X0,π′
+Bξ′ + Y ξ′k,n+m−k) de�ned respectively on [θ′k, θ

′∗
k ] and [θ′∗k , θ

′
k+1] are super-martingales for every

(ξ′, π′) ∈X n,m(ξ)×Aθn
(π), and martingales with (π′, ξ′) = (π̂, ξ̂). The only di�erence with Section B lies in

the fact that the number of switches is bounded by m. This implies:

U
(
X0,π +Bξ +Y

ξn,m
)

θn

= Eθn

[
U
(
X0,π̂ +Bξ̂ +Y ξ̂n,m

)
θ̂∗n

]
= Eθn

[
U
(
X0,π̂ +Bξ̂ +Y

ξ̂n+1,m−1
)

θ̂n+1

]
.

Direct iteration of this argument provides:

U
(
X0,π +Bξ +Y

ξn,m
)

θn

= Eθn

[
U
(
X0,π̂

T +Bξ̂
T +χ

)]
.

On the other hand, for any management-investment strategies (ξ′, π′) ∈ X n,m(ξ)×Aθn(π), the same super-

martingale argument yields:

U
(
X0,π +Bξ +Y

ξn,m
)

θn

≥ Eθn

[
U
(
X0,π′

T +Bξ′

T +χ
)]
,

which completes the proof. �

Proof of Corollary 2. Notice that X n,m(ξ)⊂X n,m+1(ξ), so Y
i,n

t ≤ Y
i,n+1

t , a.s. Since Y
i,n

and Y
i,n+1

are

continuous processes, this implies that Y
i,n ≤ Y

i,n+1
, a.s. The comparison principle for quadratic re�ected

BSDE (Theorem 3.2 in Kobylanski et al. (2002)) shows that Y i,n
t ≤ Y i,n+1

t a.s. for all t and, by continuity

Y i,n ≤ Y i,n+1 a.s. �
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Proof of Proposition 4. By Corollary 2, the sequence (Y i,n) is non-decreasing. Then it converges pointwise

to a process Ỹ i. We now provide uniform bounds for this sequence. Let (ξ,π) be a pair of management-

investment strategies in X0×A0. From the proof of Proposition 3, we also deduce:

U
(
X0,π +Bξ +Y ξn,m

)
θ∗n

= ess. sup
(ξ′,π′)∈Xn,m(ξ)×Aθ∗n

(π)

Eθ∗n

[
U
(
X0,π′

T +Bξ′

T +χ
)]

≤ ess. sup
(ξ′,π′)∈Xn,m(ξ)×Aθ∗n

(π)

Eθ∗n

[
U

(
X0,π′

T +
∫ T

0

max
j
ψj

tdt+χ

)]
≤ ess. sup

π′∈Aθ∗n
(π)

Eθ∗n

[
U
(
X0,π′

T +κT +χ
)]

where κ is a bound for maxj |ψj |, and χ is an upper bound for |χ|. Following Hu et al. (2005), we get:

U

(
X0,π

t +
∫ t

0

ψi
udu+Υ

i

t

)
= ess. sup

π′∈At(π)

Et

[
U

(
X0,π′

T +
∫ T

0

ψi
udu+χ

)]
,

where Υ
i

t = Eg
t,T

[
χ+

∫ T

t

(
1
2η

∣∣ΠΣ∗
uK(Σ−1

u µu)
∣∣2 +ψi

u

)
du
]
, thus:

U

(
X0,π +

∫ .

0

ψi
udu+Υ

i

)
θ∗n

≥ ess. sup
π′∈Aθ∗n

(π)

Eθ∗n

[
U
(
X0,π′

T −κT −χ
)]

,

and we end up with:

U
(
X0,π +Bξ +Y ξn,m

)
θ∗n
≤ U

(
2(κT +χ) +X0,π +

∫ .

0

ψξn

u du+Υ
ξn
)

θ∗n

.

This being true for all management strategy ξ, we obtain:

Y i,n
t ≤ 2κT +2ξ+Υ

i

t .

On the other hand, Y 0,n ≥ Y i,0 = Υ
i

t because the sequence Y
i,n is non-decreasing. Since Υ

i ∈H∞(R), as a

solution of a quadratic BSDE with bounded terminal condition, the sequence (Y i,n)n≥0 is uniformly bounded

by some constant. In particular, this implies that Ỹ i ∈ H∞(R). Using relation (17), we deduce that the

sequences (Y
i,n

)n≥0, 1≤ i≤M , are uniformly bounded.

We are thus in the conditions of proposition 2.4 in Kobylanski (2000), and we conclude that the sequences

(Y
i,n

)n≥0, 1 ≤ i ≤M , converge to processes Y̌ i ∈ H∞
0 (R). We are also in the conditions of theorem 4 in

Kobylanski et al. (2002) and we conclude that (Y i,n)n≥0 converges uniformly on [0, T ] to Ỹ i ∈ H∞
0 (R),

(Zi,n)n≥0 converges to Z̃i ∈ H2
0(RN) and (Ki,n)n≥0 converges uniformly on [0, T ] to K̃i ∈ J (R). Moreover

(Ỹ i, Z̃i, K̃i) satis�es the backward system (12)-(13)-(14)-(15). �
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