

Monte-Carlo Valorisation of American Options:
Facts and New Algorithms To Improve Existing Methods

Bruno Bouchard Xavier Warin

Rapport de Recherche

RR-FiME-10-07
Mai 2010

Monte-Carlo valorisation of American options: facts and new
algorithms to improve existing methods

Bruno Bouchard a and Xavier Warin b

aCEREMADE-University Paris-Dauphine and CREST-ENSAE.
bEDF R&D & FiME, Laboratoire de Finance des Marchés de l’Energie (www.fime-lab.org)

Abstract

The aim of this paper is to discuss efficient algorithms for the pricing of American options by two recently proposed
Monte-Carlo type methods, namely the Malliavian calculus and the regression based approaches. We explain how
both technics can be exploded with improved complexity and efficiency. We also discuss several technics for the
estimation of the corresponding hedging strategies. Numerical tests and comparisons, including the quantization
approach, are performed.

Key words: American, Option, Monte Carlo methods

1991 MSC: to submit.

1. Introduction

In the last decades, several Monte-Carlo type technics have been proposed for the numerical computation
of American option prices, or more generally the evaluation of value functions associated to semi-linear
parabolic equations, with possible free boundary, see e.g. the survey paper [8]. The idea of combining Monte-
Carlo methods with approximations of the expectation operator in backward induction schemes comes back
to Carrière [11] and was popularized by Longstaff and Schwartz [25]. This was the starting point of fruitful
researches involving, in particular, a series of papers by Pagès and its co-authors, see e.g. [1] or [2], on
the quantization approach, Lions and Renier [24], and Bouchard, Ekeland and Touzi [7,9] on the Malliavin
calculus based formulation.

The aim of all the above mentioned papers is to compute prices for American or Bermudean options in
(relatively) high dimensions, when purely deterministic technics (finite differences or finite elements for par-
tial differential equations, approximating trees) are made inefficient by the so-called curse of dimensionality.
The rationality behind the purely Monte-Carlo based approaches of [25] and [9] is that the convergence
speed of the proposed schemes does not a-priori depend on the dimension of the problem. This is the usual
justification for the use of such technics in numerical integration, although, like for any Monte-Carlo method,
the dimension plays an import role at finite distance, usually through the variance of the estimation error
or the complexity of the algorithm.

? We are grateful to Christos Makris for helpful suggestions.
Email addresses: bouchard@ceremade.dauphine.fr (Bruno Bouchard), xavier.warin@edf.fr (and Xavier Warin).

Preprint submitted to Elsevier 26 May 2010

In the regression based approach of Longstaff and Schwartz [25], it appears in the choice of the basis
of polynomials used for the numerical estimation of conditional expectations. Such a choice is made very
difficult in practice when the dimension increases. Many papers are devoted to such an issue but most of
them only discuss the performance of suitable choices for situations in which the payoff function is rather
standard and the price can be computed with rather good efficiency by deterministic technics. It is therefore
not clear whether the choice of the regression basis was optimized a-posteriori in order to give the best results
for these particular cases. The question of choosing a good basis in a practical non-standard situation is
completely open and is typically reduced to an arbitrary choice, leading to a numerical error out of any
reasonable control.

In the Malliavin based approach, the dimension of the problem appears through an exploding variance
of the estimators of the conditional expectation operators. This is due to the Skorohod integrals (usually
called Malliavin weights) which enter into the representation of conditional expectations as the ratio of two
unconditional expectations obtained by integrating by parts the Dirac mass which shows up when applying
the Bayes’ rule. The variance of these terms explodes with the dimension of the underlying factor and with
the number of time steps. Another important issue is the complexity of the algorithm, which, a-priori, seems
to be of order of the number of simulated paths N to the square: O(N2). Since the variance explodes with
the number of underlying factors and the number of times steps, a large number of simulated paths has to
be used in order to achieve a good precision in high dimension. The above mentioned complexity thus makes
this approach a-priori much too slow in practice.

The aim of this paper is to explain how both methods can be improved in order to circumvent the
above mentioned criticisms. As for the non-parametric regression based method, we suggest to modify the
purely non-parametric method of [20] by adapting the support of the function basis to the density of the
underlying factors. The main advantage of this approach is that the regression basis is not chosen a-priori
but automatically adapted to the function of interest. Concerning the Malliavin based approach, we explain
how an efficient algorithm with a reduced complexity can be constructed. We shall see in particular that the
complexity of this algorithm is far from being of the order of the number of simulated paths to the square, as
claimed in many papers. It is of order O(N ln(N)(d−1)∨1) where d is the dimension of the underlying factor.

For both methods, we will explain how, with essentially the same computation costs, two consistent
estimators can be build at the same time. The first one corresponds to the approach of Longstaff and Schwartz
[25], which consists in estimating the optimal exercise time. The second is based on the computation of the
prices a each time through a pure backward induction procedure. Because, the estimator of the optimal
excercise rule is by nature sub-optimal, the first price estimator is essentially biased from below. On the
other hand, because of the convexity of the max operator, the second one is essentially biased from above.
We suggest to consider the corresponding interval to test the accuracy of the estimations. This can be seen
as a subsidy for the usual confidence interval in linear Monter-Carlo methods.

We shall also investigate different methods for the computation of the hedging strategy. In particular, we
shall emphasize that the standard tangent process approach, widely used in the context of European type
options, can be used for American options too. We will also consider Malliavin based technics, following the
ideas of the seminal paper [17].

The rest of the paper is organised as follows. In Section 2, we recall fundamental results on the pricing of
American and Bermudean options. We discuss the error induced by the approximation of American option
prices by their Bermudean counterparts. We also provide different representation for the hedging policy.
In Section 3, we explain how these results can be exploited in order to build estimators of the price and
the hedging strategy, assuming that we are given a way of approximating conditional expectations. Section
4 is dedicated to the presentation of improved versions of the regression based and the Malliavin based
Monte-Carlo algorithms. Numerical experiments and comparisons, including the quantization approach of
[2], are presented in Section 5.

All over this paper, elements of Rd are viewed as column vectors and transposition is denoted by ′.

2

2. Fundamental results for the construction of numerical algorithms

In this section, we review some fundamental results on the formulation of prices and the representation
of hedging strategies that will be used in the algorithms described below.

All over this paper, we shall consider a d-dimensional Brownian motion W on a probability space (Ω,F ,P)
endowed with the natural (completed and right-continuous) filtration F = (Ft)t≤T generated by W up to
some fixed time horizon T > 0. We assume, for sake of simplicity, that the interest rate is zero and that
there exists only one risk neutral measure, which is given by the original probability measure P (or at least
P will be considered to be the pricing measure). The stock dynamics is modeled as the strong solution
X = (X1, . . . , Xd) of the stochastic differential equation:

Xt = X0 +

t∫
0

σ(s,Xs)dWs t ≤ T, (1)

where σ is a Lipschitz continuous function defined on [0, T]×Rd and taking values in the set of d-dimensional
square matrices. For sake of simplicity, we shall assume from now on that the stock price process X can be
perfectly simulated on any finite time grid of [0, T], which is the case in most standard market models.

These choices are made in order to simplify the presentation, but the above algorithms/results could
clearly be extended to more general situations, see e.g. [8] for convergence issues.

2.1. Definitions and facts

We recall in this section some well-know facts on the pricing of American and Bermudean options.

From now on, the payoff of the American option is defined as a deterministic measurable function g :
[0, T] × Rd 7→ R, i.e. the seller pay g(t, x) at time t if the option is exercised at time t and the value of
the underlying assets is x. We shall assume all over this paper that g has linear growth and is Lipschitz
continuous.

Under the above assumption, it follows from standard arguments, see e.g. [15], that the price at time t of
the American option is given by a continuous supermartingale P satisfying

Pt = ess sup
τ∈T[t,T]

E [g(τ,Xτ) | Ft] for t ≤ T P− a.s. , (2)

where T[t,T] denotes the set of stopping times with values in [t, T].
Similarly, the price of a Bermundean option with the same payoff function, but which can be exercised

only at times in
π := {0 = t0 < t1 < t2 < · · · < tκ = T} , for some κ ∈ N,

is given by a làdcàg supermartingale Pπ satisfying

Pπt = ess sup
τ∈T π[t,T]

E [g(τ,Xτ) | Ft] for t ≤ T P− a.s. , (3)

where T π[t,T] denotes the set of stopping times with values in [t, T] ∩ π.
It then follows from the Doob-Meyer decomposition, that we can find predictable processes φ and φπ as

well as non-decreasing processes A and Aπ such that

3

E

 T∫
0

|φs|2 + |φπs |2ds

 <∞ , A0 = Aπ0 = 0

and

Pt = P0 +

t∫
0

φ′sdWs −At , Pπt = Pπ0 +

t∫
0

φπs
′dWs −Aπt for t ≤ T P− a.s. (4)

The processes φ and φπ are related to the hedging strategy of, respectively, the American and the Bermudean
option. More precisely, the number of units of stocks to hold in the hedging portfolio are given by ψ′ :=
φ′σ−1(·, X) and ψπ ′ := φπ ′σ−1(·, X) whenever these quantities are well-defined.

Moreover,

Pt = E [g(τ̂t, Xτ̂t) | Ft] and Pπt = E
[
g(τ̂πt , Xτ̂πt

) | Ft
]

for t ≤ T P− a.s. , (5)

where

τ̂t := inf {s ∈ [t, T] : Ps = g(s,Xs)} and τ̂πt := inf {s ∈ [t, T] ∩ π : Pπs = g(s,Xs)} (6)

are the optimal exercise times, after t. In particular, P and Pπ are martingales on [t, τ̂t] and [t, τ̂πt] respec-
tively, for all t ≤ T .

2.2. From Bermudean to American options

Most numerical methods for the pricing of American options are based on the approximation by Bermudean
options with time grid π with mesh |π| := maxi<κ(ti+1 − ti) going to 0. The approximation is justified the-
orically by the following result, see [1] and [6].
Theorem 1 The following holds:

max
i≤κ

E
[
|Pti − Pπti |

2
] 1

2 ≤ O(|π| 14) .

If moreover there exists ρ1 : [0, T]× Rd 7→ Rd+1 and ρ2 : [0, T]× Rd 7→ R+ such that

|ρ1(t, x)|+ |ρ2(t, x)| ≤ CL(1 + |x|CL)

g(t, x)− g(s, y) ≤ ρ1(t, x)′(s− t, y − x) + ρ2(t, x)(|t− s|2 + |x− y|2) , ∀ x, y ∈ Rd, t, s ∈ [0, T] . (7)

for some constant CL > 0, then

max
i≤κ

E
[
|Pti − Pπti |

2
] 1

2 + E

 T∫
0

|φs − φπs |2ds

1
2

≤ O(|π| 12) .

Note that the assumption (7) is satisfied by most payoffs in practice.
In view of this convergence result, it is enough to focus on the pricing of Bermudean options. We will

therefore concentrate on this in the following.
Remark 1 We refer to [1] and [6] for the additional error due to the approximation of X by its Euler
scheme. For a time step of size h > 0, It is of order O(h1/4) in general, and of order O(h1/2) under (7).

4

2.3. Delta representations

For practical purposes, the computation of the hedging strategy is as important as the estimation of the
price process. As for European type options, at least three different methods can be used in practice. In this
section, we restrict to the case of Bermudean options, recall the convergence results of Section 2.2.

2.3.1. Finite difference approach
The finite difference approach consist is estimating the price process for different initial conditions. More

precisely, let Pπ,δ be defined as in (1)-(3) with X0 replaced by X0 + δ, δ ∈ Rd. Then, following the standard
approach for European options, one could approximate the i-th component of φπ0

′σ(0, X0)−1 by (Pπ,δi0 −
Pπ0)/h or (Pπ,δi0 −Pπ,−δi0)/2h where δi is the vector of Rd defined by δji = h1i=j and h > 0 is small. A large
literature is available on this approach for European type options, see e.g. [14] and the references therein. To
our knowledge, no rigorous convergence result is available for American type options. However, in the case of
Bermudean options, the results obtained for European options can still be applied at time 0 by considering
the deterministic price function pπ(t1, ·), where pπ is implicitly defined by pπ(·, X·) = Pπ on [0, t1], as a
given terminal payoff at time t1.

Note that this requires the computation of two different values of the American option price, for two
different initial conditions, which is, a-priori, much too time consuming in comparison to the technics pro-
posed below. On the other hand the algorithms presented below, Algorithms A1, A2 and A2b, can be easily
adapted to this context. Indeed, they produce (or can produce for Algorithm 1), simulated values of option
prices on a grid of time corresponding to simulated values of the stock prices. If one starts the simulations
of the stock prices at time −δ, δ > 0 small, they will thus produce values of the option price at time 0
for simulated, but close if δ is small, values of the stock prices. These can be used to compute the finite
differences. Obviously there is no hope that this method will be convergent and the choice of the value of δ
is not clear. We will therefore not test this approach here.

2.3.2. Tangent process approach
Assume that g, σ is C1

b . Then, under a standard uniform ellipticity condition on σ and mild additional
regularity assumptions, ensuring the usual smooth pasting property for the American option price on the
associated free boundary, it is shown in [19] that there exists a version of φ satisfying

φ′0 = E [∇g(τ̂0, Xτ̂0)′∇Xτ̂0]σ(0, X0)

where ∇g denote the gradient of g with respect to its space variable and ∇X is the first variation (or
tangent) process of X defined as the solution of

∇Xt = Id +

t∫
0

d∑
j=1

∇σj(Xr)∇XrdW
j
r

where Id is the identity matrix of Md, σj is the j-th column of σ, and ∇σj the Jacobian matrix of σj . This
is a natural extension of the well-known result for European options, see [10].

This result was then extended in [6], see also [34], to Bermudean options in terms of the Malliavin
derivative process of X, without ellipticity condition. Here, we state it in terms of the first variation process
∇X, compare with Corollary 5.1 and see (5.3) in [6].
Theorem 2 Assume that g, σ ∈ C1

b then there exists a version of φπ satisfying

φπt
′ = E

[
∇g(τ̂πt , Xτ̂πt

)′∇Xτ̂t | Ft
]

(∇Xt)−1σ(t,Xt) , t ≤ T . (8)

5

Remark 2 Note that the payoff function g is assumed to be C1
b in the above assertion. However, it should be

clear that it can be extended to many situations where g is only differentiable a.e. with bounded derivatives. In
particular, for one dimensional put options with strike K, it is clear that Xτ̂πt

< K P−a.s. since g(t,K) = 0,
at least under suitable ellipticity conditions on σ ensuring that Pπ > 0 on [0, T). Since K is the only point
where the payoff function is not differentiable, the above representation can be easily extended.

2.3.3. Malliavin calculus approach
An extension of the formulation of the delta similar to the one introduced for European type options in

the seminal paper [17] was first proposed in [26]. However, it involves the non-decreasing process A (or Aπ)
which is difficult to estimate in practice. In the case where we restrict to Bermudean options, then things
simplify and the result of Proposition 5.1 in [6], together with a standard integration by parts argument in
the Malliavin calculus sense, leads to the following representation.
Theorem 3 Assume that g, σ ∈ C1

b and that σ is invertible with bounded inverse, Then there exists a
version of φπ satisfying

φπt
′ =

1
ti+1 − t

E

Pπti+1

ti+1∫
t

σ(s,Xs)−1∇XsdWs | Ft

′ (∇Xt)−1σ(t,Xt) , t ∈ [ti, ti+1), i ≤ κ . (9)

Since Pπ is a martingale on each interval [t, τ̂t], it can alternatively be written in the following form.
Theorem 4 Assume that g, σ ∈ C1

b and that σ is invertible with bounded inverse, Then there exists a
version of φπ satisfying

φπt
′ =

1
ti+1 − t

E

g(τ̂πt , Xτ̂πt
)

ti+1∫
t

σ(s,Xs)−1∇XsdWs | Ft

′ (∇Xt)−1σ(t,Xt) , t ∈ [ti, ti+1), i ≤ κ .(10)

Remark 3 In Black-Scholes type models, i.e. σ(t, x) = diag [x] σ̃(t) where diag [x] is the diagonal matrix
with i-th diagonal component equal to xi and σ̃ is deterministic with bounded inverse, then the above results
still holds true. Also note that the payoff function g is assumed to be C1

b in the above assertion. However,
it should be clear that it can be extended to more general situations where g can be uniformly approximated
by a sequence of C1

b functions. This follows from standard stability results for reflected backward stochastic
differential equations.

3. Abstract algorithms

3.1. Backward induction for the pricing of Bermudean options

It follows from the formulation (3) of Pπ in terms of an optimal stopping problem on a finite time grid, that
the price process of the Bermudean option satisfies the so-called backward American dynamic programming
equation:

PπT = g(T,XT) and Pπti = max
{
g(ti, Xti) , E

[
Pπti+1

| Fti
]}

for i = κ− 1, . . . , 0 . (11)

or equivalently, thanks to the martingale property of Pπ on each interval [t, τ̂πt],

PπT = g(T,XT) and Pπti = max
{
g(ti, Xti) , E

[
Pπτ̂πti+1

| Fti
]}

for i = κ− 1, . . . , 0 . (12)

6

Assuming that the involved conditional expectation can be perfectly estimated, this leads to two kind
of possible algorithms for the computation of the price of the Bermudean option at time 0. In pratice,
these operators have to be replaced by a numerical estimation. In what follows, we denote by Ê[· | Fti]
an approximation of the true condition expectation operator E[· | Fti]. For Ê given, the corresponding
approximation schemes are:

Algorithm A1 [optimal exercise time estimation]:
1. Initialisation : Set τ̂1,π

κ := T .
2. Backward induction : For i = κ− 1 to 0, set τ̂1,π

i := ti1A1
i

+ τ̂1,π
i+11(A1

i
)c

where A1
i := {g(ti, Xti) ≥ Ê[g(τ̂1,π

i+1, Xτ̂1,π
i+1

) | Fti]}.
3. Price estimator at 0: P̂ 1,π

0 := Ê[g(τ̂1,π
0 , Xτ̂1,π

0
)].

Algorithm A2 [price process computation]:
1. Initialisation: Set P̂ 2,π

T := g(T,XT)
2. Backward induction: For i = κ− 1 to 0, set P̂ 2,π

ti := max{g(ti, Xti) , Ê[P̂ 2,π
ti+1
| Fti]}.

3. Price estimator at 0: P̂ 2,π
0 .

Note that the optimal exercise strategy can also be approximated in the Algorithm A2 as follows:
Algorithm A2b [with optimal exercise time estimation]:
1. Initialisation: Set τ̂2,π

κ = T
2. Backward induction: For i = κ− 1 to 0, τ̂2,π

i := ti1A2
i

+ τ̂2,π
i+11(A2

i
)c where A2

i := {g(ti, Xti) = P̂ 2,π
ti }.

3. Price estimator at 0: P̂ 2b,π
0 := Ê[g(τ̂2,π

0 , Xτ̂2,π
0

)].

The algorithm A1 corresponds to the approach of [25] in which the conditional expectation operators are
estimated by non-parametric regression technics based on a suitable choice of regression polynomials.

The algorithm A2 corresponds to the approach of [24] and [7] in which the conditional expectation opera-
tors are estimated by pure Monte-Carlo methods based on the representation of conditional expectations in
terms of a suitable ratio of unconditional expectations obtained by using some Malliavin calculus technics,
see below.

Note that, if we assume for a moment that the conditional expectation operators are conditionally un-
biased, i.e. E[Ê[· | Fti] | Fti] = E[· | Fti], then a backward induction argument combined with Jensen’s
inequality implies that E

[
P̂ 2,π

0

]
≥ Pπ0 . On the other hand, the fact that the estimated optimal exercise

policy τ̂ i,π0 is suboptimal by definition, for i = 1, 2, implies that E
[
P̂ 1,π

0

]
≤ Pπ0 and E

[
P̂ 2b,π

0

]
≤ Pπ0 . It

follows that, at least at a formal level:

E
[
P̂ 1,π

0

]
,E
[
P̂ 2b,π

0

]
≤ Pπ0 ≤ E

[
P̂ 2,π

0

]
. (13)

The above formal relation can then be used for the construction of confidence intervals for the true price
of the Bermudean option: [P̂ 1,π

0 , P̂ 2,π
0] or [P̂ 2b,π

0 , P̂ 2,π
0]. If the computation of the conditional expectations is

accurate, then the effect of the convexity bias should be small and therefore P̂ 2,π
0 should be close to Pπ0 .

Similarly, the error in estimating the exact counterpart of the exercise regions A1
i and A2

i should be small
and therefore the estimation of the optimal stopping times should be good, leading to P̂ 1,π

0 and P̂ 2b,π
0 close

to Pπ0 . Thus, a tiny confidence interval should reveal a good approximation of the exact price, while a large
confidence interval should be a sign that the estimation was poor. In practice, it seems better to use the
interval [P̂ 2b,π

0 , P̂ 2,π
0] as both quantities can be computed at the same time with almost no additional cost.

3.2. Hedging strategy approximation

As above, we restrict to the case of a Bermudean option. Recalling that the number of units ψπ of stocks
to hold in the hedging portfolio is given by φπ ′σ−1(·, X), whenever this quantity is well-defined, one can

7

estimate the hedging policy by using one of the representation of φπ presented in Section 2.3.

The finite difference approach mentioned in Section 2.3.1 can be combined with Algorithms A1 and A2
in an obvious manner.

As for the tangent process approach and the Malliavin calculus based one, we can also use Algorithms A1
and A2. Algorithms A1 and A2b provide an estimation of the optimal exercise strategy. Plugged into (8) or
(10) this leads to two possible approximations of the hedging strategy at time 0:

φπ0
′ ∼ Ê

[
∇g(τ̂π0 , Xτ̂π0

)′∇Xτ̂π0

]
σ(0, X0) (14)

or

φπ0
′ ∼ 1

t1
Ê

g(τ̂π0 , Xτ̂π0
)

t1∫
0

σ(s,Xs)−1∇XsdWs

′ σ(0, X0) , (15)

with τ̂π0 = τ̂1,π
0 or τ̂2,π

0 .
Algorithm A2 provides an estimation of the price process at time t1. Plugged into (9) this leads to

φπ0
′ ∼ 1

t1
Ê

P̂ 2,π
t1

t1∫
0

σ(s,Xs)−1∇XsdWs

′ σ(0, X0) . (16)

4. Improved algorithms for the estimation of conditional expectations

As above, we focus on the pricing of Bermudean options. We shall also assume here that the process X
can be perfectly simulated on the time grid π. If this is not the case, then it has to be replaced by its Euler
scheme. The convergence results of Section 2.2 justify these approximations.

4.1. The regression based approach

We first address the basis function regression method and show how to numerically improve the method-
ology proposed by [25]. We compute the complexity of the method depending on the number of particules
and the number of basis functions.

4.1.1. Generalities
The common fundamental idea in the regression based and the Malliavin based approach consists in

using simulated paths of the stock prices (X(j))j≤N and to apply one of the backward induction Algorithms
A1, A2 (possibly A2b) described in Section 3.1 by using the simulations in order to estimate the involved
conditional expectations.

In the context of Algorithm A1, the numerical procedure reads as follows:

Algorithm A1 with regression [optimal exercise time estimation]:

1. Initialisation : Set τ̂1,π,(j)
κ := T , j ≤ N

2. Backward induction : For i = κ− 1 to 1, set τ̂1,π,(j)
i := ti1A1,(j)

i

+ τ̂
1,π,(j)
i+1 1

(A
1,(j)
i

)c

where A1,(j)
i := {g(ti, X

(j)
ti) ≥ ÊN [g(τ̂1,π

i+1, Xτ̂1,π
i+1

) | Xti = X
(j)
ti]}, j ≤ N ,

3. Price estimator at 0: P̂ 1,π,
0 := 1

N

∑N
j=1 g(τ̂1,π,(j)

0 , X
(j)

τ̂
1,π,(j)
0

), where the estimation

8

F̂N (ti, X
(j)
ti) := ÊN [g(τ̂1,π

i+1, Xτ̂1,π
i+1

) | Xti = X
(j)
ti]

of the true conditional expectation

F (ti, X
(j)
ti) := E[g(τ̂1,π

i+1, Xτ̂1,π
i+1

) | Xti = X
(j)
ti]

is computed by regressing (g(τ̂1,π,(`)
i+1 , X

(`)

τ̂
1,π,(`)
i+1

))`≤N on (ψ1(X(`)
ti), . . . , ψM (X(`)

ti))`≤N , where ψ1, . . . , ψM are

given functions, i.e.

F̂N (ti, x) :=
M∑
k=1

α̂ti,Nk ψk(x)

where (α̂ti,Nk)k≤M minimizes

N∑
`=1

∣∣∣∣∣g(τ̂1,π,(`)
i+1 , X

(`)

τ̂
1,π,(`)
i+1

)−
M∑
k=1

αkψk(X(`)
ti)

∣∣∣∣∣
2

over (αk)k≤M ∈ RM .

Clearly, the same ideas can be combined with Algorithm A2 (and its variation A2b).

We shall not discuss here the theoretical convergence of the method, we refer to [13] for rigorous statements,
but rather describe how it can be improved from a numerical point of view.

4.1.2. General comments on the regression procedure
Note that at each step of the above algorithm, we have to solve a quadratic optimization problem of the

form

min
α∈RM

‖Aα−B‖2 (17)

Different solutions are available. First, we can deduce the induced normal equations

A′Aα = A′B , (18)

and use a Choleski decomposition LL′ of A′A to solve it. This method is the most efficient in term of
computational time but is rather sensible to roundoff error. Besides, it is not memory consumming because
the A matrix does not need to be constructed.

A more stable approach consists in using a QR decomposition of A, i.e. write A as QR where Q is a N -
dimensional orthonormal matrix and R is a N -dimensional upper triangular matrix, and solve Rα = Q′B.
This is much more time consuming. Moreover, the N ×M matrix A has to be stored. When using standard
basis functions for the ψk’s, it is typically full, which may become highly demanding in terms of memory
when the number of basis functions is high.

In order to completely avoid roundoff errors, the Singular Value Decomposition can be used: write A =
UWV ′ with U in RN ×RN an orthogonal square matrix , V an orthogonal square matrix in RM ×RM , and
W a diagonal matrix in RN ×RM with only positive or zero entries wi on the diagonal. Replacing 1/wi by
zero if wi = 0, the solution to (17) is given by

α = V [diag [1/wi]]U ′B (19)

9

Still this method suffers the same problem as the QR algorithm in term of memory needed to create the
matrix A and is the most time consumming.

4.1.3. Drawbacks of polynomial regressions
The idea of taking ψ1, . . . , ψM has polynomials, or more generally as functions with global support,

was first introduced by [36], in the context of general optimal stopping problems, and then used to price
American options by [25]. In [25], the authors use monomial basis functions and Laguerre polynomials. Most
of the following papers have consisted in extending this approach to Hermite, Hyperbolic and Chebyshev
polynomials (see [12] for example).

Some basis may be choosen orthogonal in order to invert easily the associated normal equation (18). Note
however that it should then be orthogonal in the law induced by X and not with respect to the Lebesgue
measure as usually chosen.

Although very easy to implement in practice, this kind of function basis has a major flaw. For a given
number of particules it is not easy to find an optimal degree of the functional basis. Besides, an increase in
the number of function basis often leads to a deterioration in the accuracy of the result. This is due to rare
events that the polynomials try to fit, leading to some oscillating representation of the function.

Figure 1 below shows how the regression behaves at the first backward step for a put option in dimension
one, for different choices of monomial basis functions.

Fig. 1. Regression with global function

Clearly, the regression procedure could be improved by adding the payoff function at the first steps of
the algorithm, when the price function should still be close to the payoff. However, the number of steps for
which the payoff should be included in the basis is somehow arbitrary and difficult to determine in practice.

Note that, in the case where an explicit formula is available for the corresponding European option, one
can replace the estimator Ê[P̂ 2,π

ti+1
| Fti] in Algorithms A2 and A2b by Ê[P̂ 2,π

ti+1
− P euro(ti+1, Xti+1) | Fti] +

P euro(ti, Xti) where P euro(t, x) denotes the price of the corresponding European option at time t if Xt = x.
The rationality behind this comes from the fact that the European price process P euro(·, X) is a martingale,
and that it typically explains a large part of the Bermudean price. Alternatively, P euro(ti, ·) could also be
included in the regression basis.

4.1.4. The adaptative local basis approach
We propose to use a different technic. It essentially consists in applying a non-conform finite element

approach rather than a spectral like method as presented above.
The idea is to use, at each time step ti, a set of functions ψq, q ∈ [0,MM] having local hypercube

support Di1,i2,..,id where ij = 1 to Ij , MM =
∏
k=1,d Ik, and {Di1,..id}(i1,..,id)∈[1,I1]×···×[1,Id] is a partition of

[mink=1,N X
1,(k)
ti , maxk=1,N X

1,(k)
ti]× · · · ×[mink=1,N X

d,(k)
ti ,maxk=1,N X

d,(k)
ti]. On each Dl, l = (i1, .., id), ψl

10

is a linear function with 1 + d degrees of freedom. This approximation is “non-conform” in the sense that
we do not assure the continuity of the approximation. However, it has the advantage to be able to fit any,
even discontinuous, function.

The number of degrees of freedom is equal to MM ∗ (1 + d). In order to avoid oscillations, the support are
choosen so that they contain roughly the same number of particules.

On Figure 2, we plot the solution of the previous regression problem (Fig. 1) obtained for a number of
basis functions chosen so as to have the same number of degrees of freedom as when using polynomials.

Clearly, the method behaves much better than when the basis is made of monomials.
Moreover, the normal equation is sparsed when using such local functions, and far better conditioned,

leading to the possibility to use the Choleski method, which, as claimed above, is the most efficient for solving
the regression problem. At the opposite, basis with global support, like polynomials, typically require the
use of QR or SVD factorization, because the global resolution typically fails when a lot of particules are used.

Fig. 2. Regression with local function

Note that, in order to ensure that each hypercube approximately contains the same number of particules,
it is necessary to “localize” them in order to appropriately define the support of the local functions. In
dimension one, this can be achieved by using a quicksort procedure whose complexity is of order of O(N
ln(N)). In dimension d, two methods are available :

(i) Realize a quicksort in each direction and derive the support of the basis function so that each contains
approximatively the same number of particules. This option is particularly efficient when the particules
have rather independant coordinates. The operation is realized in O(N ln(N)).

(ii) Use a Kd tree, see e.g. [35] and [5], with depth d so that each node of depth i has Ii+1 sons. Use a quicksort
at each node of depth i to sort the particules following the coordinate i + 1, and use this sort to define
the Ii+1 sons. The complexity remains in O(N ln(N)).
Although the complexity of the two technics is the same, the first one uses only d quicksorts, while the

second one uses 1 +
∑
l=2,d

∏
j<l Ij calls to quicksort and is far more expensive.

On Figure 3, we have plotted an example of supports in the case of 16 = 4 × 4 local basis functions, in
dimension 2.

Importantly, this approach allows to increase the number of basis functions without any instability in
the resolution of the regression problem. The construction of the normal matrix A′A has a complexity of
order O(NM) when storing only non zero elements, the resolution time is negligible (linear with M because
of the sparsity of the matrix), and the reconstruction procedure is in O(N). The complexity of the global
resolution is therefore of order of O(N(M + 1) +N ln(N)).

11

Fig. 3. Support of 2D function basis

4.2. The Malliavin based approach

4.2.1. The alternative representation for conditional expectations
The idea of using Malliavin calculation to provide efficient estimators of conditional expectations first

appeared in [16], and was then further used in [24] and [7] to price American options. Given a measurable

map f , the main idea consists in writing r(ti, x) := E
[
f(Xti+1) | Xti = x

]
as

r(ti, x) =
E
[
δx(Xti)f(Xti+1)

]
E [δx(Xti)]

(20)

where δx denotes the Dirac mass at x. Then, under suitable regularity and uniform ellipticity conditions on
σ, a formal integration by parts in the Malliavin calculus sense allows to rewrite r(ti, x) as

r(ti, x) =
E
[
f(Xti+1)Hx(Xti)δti+1

]
E
[
Hx(Xti)δti+1

] (21)

where Hx denotes the Heaviside function, Hx(y) = 1 if yi > xi for all i ≤ d and Hx(y) = 0 otherwise, and
δti+1 is a Skorohod integral which depends only on the path of X on [0, ti+1], see [7] for details.

In the context of Algorithm A2 of Section 3.1, the numerical procedure reads as follows:

Algorithm A2 with Malliavin [price process computation]:

1. Initialisation: Set P̂ 2,π,(j)
T := g(T,X(j)

T), j ≤ N .
2. Backward induction: For i = κ− 1 to 0, set P̂ 2,π,(j)

ti := max{g(ti, X
(j)
ti) , ÊN [P̂ 2,π

ti+1
| Xti = X

(j)
ti]},

3. Price estimator at 0: P̂ 2,π,(1)
0 ,

12

where the estimation

F̂N (ti, X
(j)
ti) := ÊN [P̂ 2,π

ti+1
| Xti = X

(j)
ti]

of the true conditional expectation

F (ti, X
(j)
ti) := E[P̂ 2,π

ti+1
| Xti = X

(j)
ti]

is computed by considering the Monte-Carlo counterparts of the numerator and denominator in (21), i.e.

F̂N (ti, x) :=

∑N
j=1Hx(X(j)

ti)P̂ 2,π,(j)
ti+1

δ
(j)
ti+1∑N

j=1Hx(X(j)
ti)δ(j)ti+1

(22)

where δ(j)ti+1
is the Skorohod integral associated to the path X(j), and where we use the convention 0/0 = 0.

One can similarly combine this approach with Algorithm A1, by using the approximation

E[g(τ̂ti+1 , Xτ̂ti+1
) | Xti = X

(j)
ti] ∼

∑N
j=1Hx(X(j)

ti)g(τ̂ (j)
ti+1

, X
(j)
τ̂ti+1

)δ(j)ti+1∑N
j=1Hx(X(j)

ti)δ(j)ti+1

(23)

Here again, we shall not discuss the theoretical convergence of the method, we refer to [7] for rigorous
statements, but rather describe how this method should be implemented in practice so as to be efficient.

4.2.2. General comments
First, it can be shown that the variance of the Skohorod integral δti+1 is of order of (min{ti, ti+1−ti})−d, see

(24) below as an example. As will be explained below in the Gaussian case, it can be partially compensated
by incorporating a localization function. Still, this method will in general perform rather badly when the
length of the time interval between two dates of possible exercise in small. In particular, if we are interested
by the approximation of American option prices by their Bermudean counterparts, then a large number of
simulations will be required in order to compensate for the explosion of the variance of the estimator as the
time step goes to 0.

Second, we should note that the term E
[
Hx(Xti)δti+1

]
in (21) is just the density of Xti at x. If it is known,

it can be used directly instead of being estimated. In practice, it turns out that that the fact that both the
numerator and the denominator in (22) are influenced by the δ(j)ti+1

’s leads to numerical compensations which
seem to stabilize the algorithm.

In most applications, natural upper and lower bounds are known for the true price process Pπ is terms
of deterministic functions of X. They can be used to truncate the numerical results obtained at each step
of the algorithm, in order to stabilize it.

The computation of the Skorohod integrals involved in the above estimators is rather tricky in general,
even when X is replaced by its Euler scheme. This is due to the (possible) dependence of the different
components of X with respect to the different components of the Brownian motion. However, if up to a
suitable transformation and possibly a deterministic time change, we can reduce to the case where X = W ,
then things simplify significantly, as will be shown in the next section.

4.2.3. Simplifications in the Gaussian case
In the case where we can reduce to W = X, for instance in the Black-Scholes model, the Skorohod integrals

entering in the representation (21) can be taken in the form

13

δti+1 =
∏
k≤d

(
W k
i

ti
−
W k
i+1 −W k

i

ti+1 − ti

)
(24)

In order to reduce the variance of the estimator, we can also incorporate a localization function as explained
in [7]. Given a smooth bounded function ϕ on R+ such that ϕ(0) = 1, r(ti, x) can also be written with δti+1(x)
in place of δti+1 in (21), where

δti+1(x) :=
∏
k≤d

[
ϕ(W k

ti − x
k)

(
W k
ti

ti
−
W k
ti+1
−W k

ti

ti+1 − ti

)
− ϕ′(W k

ti − x
k)

]

In such a class of functions, it was shown in [7] that the one that minimizes the integrated variance of
the numerator and the denominator is of exponential type, ϕ(y) = exp(−ηy) with η > 0. The parameter η
should be theorically of order of 1/

√
min{ti, ti+1 − ti}.

Note that the numerator in (21) could be simplified by using δ̃ti+1(x) instead of δti+1(x), where

δ̃ti+1(x) :=
∏
k≤d

[
ϕ(W k

ti − x
k)
W k
ti

ti
− ϕ′(W k

ti − x
k)

]

because the increments of the Brownian motion are independent. However, we have noticed from our tests
that it is better to use the same integration weigths at the numerator and denominator so as to play with
possible numerical compensations.

4.2.4. Improved numerical methods
A crude application of the algorithm described in Section 4.2.1 leads, at each time step, to the computation

of N sums composed of N terms each. This leads to a complexity of order N2, which makes this procedure
completely inefficient in practice.

However, it should be noted that the above calculation problem for the numerator and the denominator
of our estimator can be reduced to the following one: Given N point y1, . . . , yN in Rd, and N real numbers
f1, . . . , fN ,

Compute qi :=
∑
j≤N

Hyi(yj)fj , for each i ≤ N . (25)

It is clear that both terms in (22) are of this form with yj = X
(j)
ti and fj = P̂

2,π,(j)
ti+1

δ
(j)
ti+1

or fj = δ
(j)
ti+1

.
Even, if δti+1 is replaced by δti+1(·) this remains the case, whenever δti+1(·) is defined with respect to an
exponential localizing function:

δti+1(x) =
∏
k≤d

[
e−η(W

k
ti
−xk)

(
W k
ti

ti
−
W k
ti+1
−W k

ti

ti+1 − ti

)
+ ηe−η(W

k
ti
−xk)

]

=

∏
k≤d

eηx
k

∏
k≤d

e−ηW
k
ti

[(
W k
ti

ti
−
W k
ti+1
−W k

ti

ti+1 − ti

)
+ η

]
,

where the only terms which depends on x,
(∏

k≤d e
ηxk
)

, can be added at the end of the procedure. Note that,
when the same weights are used for the numerator and the denominator, these terms actually compensate.

We now discuss how Problem (25) can be solved efficiently.

14

The one dimensional case. In the one dimensional case, the main idea is to reduce to the situation where
y1 > y2 > . . . > yN , assuming that none of them are equal for simplicity. Indeed, in this case, the qi’s can be
computed in N steps by induction: q1 = 0, qi+1 = qi + fi for i = 1, . . . , N − 1. In order to reduce to the case
where the yi’s are sorted, it suffices to use a quicksort algorithm whose complexity is of order of N ln(N).
Hence, the complexity of Problem (25) is O(N lnN) and not O(N2).

The two dimensional case. In dimension two, it is no more possible to sort the datas. However, Problem
(25) is related to the well-documented “dominance reporting problem”, which was solved efficiently in dimen-
sion two by [4] with the classical divide and conquer algorithm. The algorithm is based on the construction
of two dimensional K-d tree that stores the points, see [5]. Its construction is achieved in O(N lnN), and a
query for reporting dominance over one point can be achieved in O(

√
N), see [35] and [5]. The global dom-

inance reporting problem for a set of N points can thus be solved in O(N
√
N). We modify this algorithm

in the sequel such that our problem can be solved O(N lnN).
To show how the algorithm works, imagine for example that N = 8 as on figure 4. After a sort according

Fig. 4. First step to calculate g

to the first coordinate, we split the points into two groups with the same cardinality : points 6,2,5 and 4
define the first set, 3,1,8,7 the second set. All points of the first set can be dominated 1 by all points of set
two but no point of the second set is dominated by a point of set one.
We then compare the points from the second set with the points of the first set according to the second
coordinate, while keeping the partial summation, say psum. The algorithm is initialized with psum = 0.
Then, point 7 has the highest second coordinate of set 2 and dominates all points of set 1: add f7 to psum.
The second one, point 1 dominates all points of set one: add f1 to psum. The third one, point 8, does not
dominate points 2 and 4 of set one : add psum to q2 and q4, then add f8 to psum. The last point, point 3,
does not dominate any point of set one: add psum to q5 and q6. We have achieved the last point of set 1,
we thus stop the algorithm.
Graphically, the algorithm can be understood as follows. Draw a horizontal line crossing the vertical axis
at the level of the highest second coordinate of the two sets, then lower down this line. Each time the line
crosses a point xj of set 2, add the corresponding fj value to psum, each time the line crosses a point xk of
set 1, add psum to the corresponding qk.

In a second step, we split the first set into two sets (set 3 and 4) and the second set into two sets (set 5
and 6), see figure 5. We apply the same procedure as before on these new pair of sets. For example for set
one, we first set psum = 0. Then, the point of set 4 with the highest second coordinate is number 4 and it
does not dominate point 2 of the set 3 : add f4 to psum. The second one, point 5, does the same : add f5
to psum. Then add psum to q6 which has the lowest second coordinate.

1 Hereafter, we say that a point xj dominates a point xk if xi
j > xi

k for all i ≤ d.

15

We iterate the procedure until each subset contains only one point.

Fig. 5. Second step to calculate g

Below, we provide the algorithm for the dimension 2. It is composed of two functions :
– a one dimensional merge function given by algorithm 1,
– a recursive Divide and Conquer function given by algorithm 2.

Merge algorithm Merge1D: We are given two sets. The first set has dimension nbp1, and the second has
dimension nbp2. We are also given sorting tables of indexes isort1 and isort2 so that (xisort1(j))j≤nbp1 (resp.
(xisort2(j))j≤nbp2) corresponds to the sequence of points of set 1 (resp. set 2) sorted increasingly with respect
to the second coordinate. The array Y in the algorithm below corresponds to the second coordinate of the
points (xj)j≤N , i.e. Y (j) := x2

j . The other input is the array f of the values (fj)j≤N , f(j) := fj . The output
are the updated values of q, q(j) = qj , for the values of the index j corresponding to set 1.
Divide and conquer algorithm Divide2D: We are given one set of points (xj)j≤nbp. X and Y are the arrays
corresponding to the first and second coordinates, X(j) := x1

j and Y (j) := x2
j . The arrays isortX and isortY

are tables of indexes so that (X(isortX(j))j≤nbp and (Y (isortY (j))j≤nbp are sorted increasingly. The input
of this function is the range of indexes corresponding to the set of points to be sorted. The result is a table
of indexes. The output of the global algorithm is the array q, q(j) = qj .

The divide and conquer leads implicitly to the construction of a binary tree of depth O(ln(N)/ ln(2)).
At each father node at depth p of this tree corresponds a subtree which contains N/2p points. The cost of
the Divide and Conquer function is linear, and we merge the points corresponding to the son nodes with a
linear cost (as seen in the Merge algorithm). At depth p, we have 2p father nodes, so the cost of merging
all subtrees and spent in the Divide and Conquer function at depth p is O(N) = 2pO(N/2p). Since the
length of the tree is O(ln(N)/ ln(2)), the global cost of the algorithm O(N ln(N)). This is the cost of the
calculation of the conditional expectation in dimension 2.

Greater dimensions. In [27] some specific algoritm based on binary trees has been developped for the
3D problem. The query time is said to be equal to O(lnN + k) where k is the number of point to report.
Recently in [22], an algorithm generalizing the previous approach and using a fusion tree of a certain degree,
instead of a binary tree, was proved to solve one query search in O(lnN/ ln lnN + k). All the geometric
algorithm suffers the same flaw: for our problem the number of points dominating another is on average N

2d

so the global answer remains in O(N2).
The key point in the calculation of q is to try to keep information about the partial summation in order to

16

Algorithm 1 Merge algorithm Merge1D(Y, f, isort1, isort2, nbp1, nbp2)
sp = 0, ip = nbp2
for i = nbp1 to 1 do
ipoint2 = isort2(ip)
ipoint1 = isort1(i)
while Y (ipoint2) >= Y (ipoint1) do
sp = sp+ f(ipoint2)
ip = ip− 1
if ip = 0 then

Break
end if
ipoint2 = isort2(ip)

end while
q(ipoint1) = sp
if ip = 0 then

for j = 1 to i− 1 do
ipoint1 = isort1(j)
q(ipoint1) = sp

end for
Break

end if
end for
return q

report geomatrically which point dominates another.This implies that it is possible to reduce drastically the
number of operations by using a similar structure as k-D trees.

It turns out that the generalisation of the previous algorithm is indeed rather straightforward. We use the
same divide and conquer algoritm in the first dimension. This reduces the problem to merging the points
in dimension d − 1. Using once again a binary tree in a new merge function, we are then able to compare
the two sets of points generated by the Divide and Conquer algorithm. To do this, we use recursively the
merge algorithm with a divide and conquer approach in order to decrease the dimension of the final merge
to dimension one. The idea of dominance merge is described page 367 of [4]. For example in dimension
three, the main divide and conquer, see Algorithm 3, is identical to the two dimensional algorithm. The only
difference is that it asks for a merge in dimension 2.

Divide and conquer algorithm Divide3D: We are given one set of points (xj)j≤nbp.X, Y and Z are the arrays
corresponding to the first, the second and the third coordinates, X(j) := x1

j , Y (j) := x2
j and Z(j) := x3

j . The
arrays isortX, isortY and isortZ are tables of indexes so that (X(isortX(j))j≤nbp, (Y (isortY (j))j≤nbp and
(Z(isortZ(j))j≤nbp are sorted increasingly. The input of this function is the range of indexes corresponding
to the set of points to be sorted. The result is a table of indexes. The output of the global algorithm is the
array q, q(j) = qj .

The merge in dimension 2 is given by Algorithm 4. It is a recursive algorithm that calls the Merge1D,
Algorithm 1. Two sets A and B in dimension 2 with associated second and third coordinates are used as
input. Due to the divide and conquer part, we know that potentially each point in B dominates the points in
A, because they have bigger first coordinates. A split is achieved on A∪B according to the second coordinate
leading to four subsets A1, A2, and B1, B2, see figure 6. Then a call to the Merge2D function is achieved on
A1 and B1 and on A2 and B2. All point of B2 dominate the points of A1 according to the second coordinate.
It only remains to check in the third direction, which is performed by a Merge1D on B2 and A1 according

17

Algorithm 2 Divide and conquer algorithm Divide2D(X,Y, f, isortX, isortY, nbp)
imed = nbp/2
imedp = nbp− imed
xmed = (X(isortX(imed)) + X(isortX(imed + 1)))/2 // compute the median point which deliminates
set 1 (first coordinate lower than xmed) and set 2 (first coordinate bigger than xmed)
isortX1 = isortX(1 : imed) // sort datas according to the first coordinate in set 1
isortX2 = isortX(imed+ 1 : nbp) // sort datas according to the first coordinate in set 2
iy1 = 0
iy2 = 0
for i = 1 to nbp do
ipoint = isortY (i)
if X(ipoint) <= xmed) and (iy1 < imed) then
isortY1(iy1) = ipoint
iy1 = iy1 + 1

else
isortY2(iy2) = ipoint
iy2 = iy2 + 1

end if
end for// sort datas according to the second coordinate in each subset
Divide2D(X,Y, f, isortX1, isortY1, imed)
Divide2D(X,Y, f, isortX2, isortY2, imedp) // recursive call to Divide2D on each subset
qloc = Merge1D(Y, f, isortY1, isortY2, imed, imedp) // call of Merge1D on the two subsets
for i = 1 to imedp do
ipoint1 = isortX1(i)
q(ipoint1) = q(ipoint1) + qloc(ipoint1)

end for// update of q

Fig. 6. 2D merge for two subsets A and B

to the third coordinate.
The cost c(N) of the merge with N points can be decomposed in:

– some operation with linear cost in N ,
– two merges in dimension 2 with N/2 points,
– one merge in dimension one with N/2 points realized in O(N/2).
Hence, c satisfies c(N) = 2c(N/2) +O(N), which leads to a global cost c(N) = O(N lnN).

The divide and conquer algorithm with cost D(N) achieves :
– two divide an conquer with N/2 points,

18

Algorithm 3 Divide and conquer algorithm Divide3D(X,Y, Z, f, isortX, isortY, isortZ, nbp)
imed = nbp/2
imedp = nbp− imed
xmed = (X(isortX(imed)) +X(isortX(imed+ 1)))/2
isortx1 = isortx(1 : imed)
isortx2 = isortx(imed+ 1 : nbp)
iy1 = 0
iy2 = 0
for i = 1 to nbp do
ipoint = isortY (i)
if X(ipoint) <= xmed) and (iy1 < imed) then
isortY1(iy1) = ipoint
iy1 = iy1 + 1

else
isortY2(iy2) = ipoint
iy2 = iy2 + 1

end if
end for
iz1 = 0
iz2 = 0
for i = 1 to nbp do
ipoint = isortZ(i)
if X(ipoint) <= xmed) and (iz1 < imed) then
isortZ1(iz1) = ipoint
iz1 = iz1 + 1

else
isortZ2(iz2) = ipoint
iz2 = iz2 + 1

end if
end for
Divide3D(X,Y, Z, f, isortX1, isortY1, isortZ1, imed)
Divide3D(X,Y, Z, f, isortX2, isortY2, isortZ2, imedp)
qloc = Merge2D(Y, f, isortY1, isortY2, isortZ1, isortZ2)
for i = 1 to imedp do
ipoint1 = isortX1(i)
q(ipoint1) = q(ipoint1) + qloc(ipoint1)

end for

Algorithm 4 Merge algorithm Merge2D(Y, Z, f, isortY1, isortY2, isortZ1, isortZ2)
Create subset A1, A2, B1, B2 (figure (6))
Create isortY11,isortZ11 associated to A1, isortY12 isortZ12 associated to A2,
Create isortY21,isortZ21 associated to B1, isortY22 isortZ22 associated to B2,
qloc = Merge2D(Y, Z, f, isortY11, isortY21, isortZ11, isortZ21)
qloc+ = Merge2D(Y,Z, f, isortY12, isortY22, isortZ12, isortZ22)
qloc+ = Merge1D(Y,Z, f, isortZ11, isortZ22)
return qloc

– one merge with cost in O(N lnN),
– some extra work with linear cost O(N).
Hence, we have D(N) = D(N/2) +O(N lnN) leading to a global cost of D(N) = O(N(lnN)2) .
For N points, the algorithm has a complexity of order N(lnN)2.

19

Number of particules 1D 2D 3D 4D 5D 6D 7D 8D 9D

10.000 0. 0.01 0.07 0.22 0.48 0.78 1.08 1.32 1.52

100.000 0.01 0.13 1.05 3.94 9.85 18.95 29.96 41.04 50.3

1.000.000 0.17 1.92 15.2 62.24 178.45 396 717 1110 1518

Table 1

Time spend in seconds to calculate g for a given set of points

The same procedure can be used in dimension d ≥ 3. The call of the merge function in dimension d at a
father node with N/2p particules leads to
– some work with linear cost O(N/2p),
– two calls of the merge at the son node with N/2p+1 particules, in dimension d,
– a call of the merge fonction with N/2p+1 particules in dimension d− 1.
So the complexity of the merge function cd can be calculated recursively. A merge for N particles in 3D
satisfies c3(N) = 2c2(N/2) +O(N/2 ln(N/2)) which leads to a complexity c3(N) = O(N(lnN)2). Similarly
a merge in dimension d, d > 2, will lead to cd(N) = O(N(lnN)d−1).
So the divide and conquer algorithm with cost Dd(N), d > 2, achieves :
– two divide and conquer with N/2 points with cost 2Dd(N/2),
– one merge in dimension d− 1 with N points and a cost in O(N(lnN)d−2),
– some extra work with linear cost O(N).
Hence, we have D(N) = 2D(N/2) +O(N(lnN)d−2) leading to a global cost of D(N) = O(N(lnN)d−1) .

In table 1, we apply the algorithm and compute the time spent for different dimensions and different
numbers of particules. In dimension 1 and 2, we effectively observe that the complexity is the same and that
the time spent divided by N ln(N) is constant. For dimension 4, it appears numerically that the time spent is
between O(N ln(N)2) and O(N ln(N)3). For dimension 9, we observe that the time spent is in O(N(lnN)6).
Our numerical results thus show a complexity slightly better than the theorical one.

5. Numerical experiments

In this part, we produce some numerical tests for the pricing of American options associated to different
payoffs.

5.1. Model and payoffs

We now set the interest rate to r = 5% annually. This means that we have to add a drift term in (1) and
take discounting into account in all our algorithms.

All the assets are non correlated and follow a Black and Scholes type dynamics with annual volatility
σ = 20%, and initial value equal to 1:

Xi
t = 1 +

t∫
0

rXi
sds+

t∫
0

σXi
sdW

i
s , i ≤ d .

We consider three different Bermudean options with maturity one year and 11 equally distributed possible
exercise dates:

Option 1: a geometrical put option with strike K = 1 and payoff (K −
∏d
i=1X

i
t)

+,
Option 2: a geometrical digital put option with strike K = 0.9 and payoff 1

K>
∏d

i=1
Xit

,

Option 3: a basket put option with strike K = 1 and payoff (K − 1
d

∑d
i=1X

i
t)

+.

20

Note that the two first payoffs involve the process
∏d
i=1X

i which can be identified to a one-dimensional
non standard exponential Brownian motion. This implies that the pricing of both Bermudean options reduces
to a one dimensional optimal stopping problem which can be efficiently solved by PDE technics. This will
serve as a benchmark. Obviously, we do not use this trick when applying our algorithms.

In the figures below, estimated prices and deltas for Options 1 and 2 are normalized by their true value
computed by PDE technics. Since no easily accessible benchmark are available for Option 3, results will be
presented in absolute values.

5.2. Numerical results on prices

In the different tests, we compare:
1. Algorithm A1 and Algorithm A2 for the regression based approach of Sections 4.1.1 and 4.1.4 with a

number of meshes equal to 8d,
2. Algorithm A1 and Algorithm A2 for the Malliavin based approach, recall (22)-(23). We use an exponential

parameter η = 1/
√

∆t in the localization function, with ∆t = 1/10.
3. We also compare our results with the quantization method, see [3], [1], [31], [2], [32]. The quantization

method is a recombining tree method where the nodes are optimally calculated, see [31]. Once a time dis-
cretization has been fixed, a number of quantization points at each time step is chosen according to [2]. The
quantization points are calculated off line and are available on the website http://www.quantize.maths-
fi.com. Once the quantization points have been chosen a Monte Carlo approach is used to calculated the
transition probabilities linking nodes in the tree. This technic being time consuming, we use the Princi-
pal Axis Tree method, see [28], to accelerate the computations. The number of Monte Carlo simulations
used to calculate the probabilities is fixed to 4 millions. Results does not change with more than 10 millions.

For each option, dimension and number of simulated paths, we apply the different algorithms with the
same set of particules.

For all the methods, no special knowlegde on the payoff has been used: no control variate (which could
be used for each method and is very efficient in practice), no special guess of the regression function.

For Option 1, results are given on figure 7 for d = 1 to 6 for the Malliavin and Regression based approaches
depending on the ln of the number N of particules used. We do not provide the results obtained with the
Malliavin approach for large values of N because it is too time consuming. For instance, in dimension 6,
the last option price calculated with 2 millions particules takes more than two hours to be calculated. It is
clearly a limitation to this approach. Recall however that no (even natural) control variate technic has been
used here.
We observe that Algorithm A2 generally provides results above the exact value of the option while the

results obtained with Algorithm A1 are slightly below the analytic value as expected, see Section 3.1. The
Malliavin approach gives very good results for dimension 1 to 3. The regression based method seems to ex-
hibit a very small bias which is due to the fact that the number of basis function is limited. From dimension
4, the convergence is becoming slow and the time needed becomes prohibitive, especially for the Malliavin
based approach.

In table 8, we give the time spent for the different calculation with different dimensions. 2

We observe that the cost of the regression approach is linear with respect to the number of particules
(instead of the expected N ln(N) due to the sort algorithm).

2 For all the computations, we use a core i7 2,9 GHz processor.

21

If we compare the two methods for Option 1 and Algorithm A1 (the most accurate), we can conclude that
for a given level of accuracy:
– the Malliavin approach is more attractive in dimension 1 (similar cost but more accurate).
– the Malliavin approach seems to be more attractive in dimension 2 too. For example, with 32.000 particules

and a cost of 0.45 secondes, the Malliavin approach provides the same accuracy as the regression approach
with 258.000 particules and a cost of 1.8 secondes (the relative error is of order of 0.2%).

– the regression approach seems to become more attractive for dimensions greater or equal to 3. For instance,
in dimension 3, with 2 millions particules and a cost of 41 secondes, it provides the same accuracy as the
Malliavin approach with 500.000 particules and a cost of 70 secondes (the relative error is of order of 0.2%).

On figure 9, we provide the results obtained with the quantization approach for Option 1 depending on
the number of global quantization points. We use two different approaches:
– The backward approach: it consists in applying Algorithm A2 to the quantized process.
– The forward approach: we first apply the backward Algorithm A1 to the quantized process so as to

compute an estimation Ĉπ of the continuation region Cπ := {(t, x) ∈ π × (0,∞)d : pπ(t, x) > g(t, x)},
where pπ(t, x) is the price of the Bermudean option at time t if the stock price is x. We then simulate
forward N paths, (X(j))j≤N , of the stock price process X and approximate the Bermudean option price
by N−1

∑
j≤N g(τ̂ (j)

0 , X
(j)

τ̂
(j)
0

) where τ̂ (j)
0 := min{t ∈ π : (t,X(j)

t) /∈ Ĉπ}. We use 4 millions particules.

In dimension 1, the quantization method requires 1.600 points 3 for an accuracy of 0.2%. Once probabilities
have been calculated, the backward and the forward resolutions are achieved in 0.02 seconds. An equivalent
accuracy can be obtained with the regression approach in 0.350 seconds. It takes 0.050 seconds with the
Malliavin approach. Obviously this does not take into account the time spend to compute the transition
probabilities, nor the construction of the quantization tree.
In dimension 2, we could only obtain an error of 0.8% with a total of 6.400 quantization points and a quan-
tization of the last time step of 815 points. With 25.600 points, the maximum accuracy was 2% in dimension
3, 8% in dimension 4, 15% in dimension 5, and 22% in dimension 6, when only using Algorithm A2.
Algorithm A1 combined with a forward Monte-Carlo simulation provides better results.
Overall, the method is converging and is certainly the less time consuming once a grid and the associated tran-
sition probabilities have been computed. However, the grids proposed on the website http://www.quantize.maths-
fi.com are not thin enough to provide accurate results.

On figures 10 and 11, we give our results for the digital put. All the methods have difficulties to converge.
Algorithm A1 always gives better results than Algorithm A2. For dimensions equal or greater to 4, only
the regression method provides good results. In dimension 3, for a given number of particules, the results
obtained by the Malliavin and the regression approach are similar for Algorithm A1. Because of the difference
in computation time, the regression approach is more appropriate. In dimension 2, the Malliavin approach
combined with Algorithm A1 seems to be more attractive but it is not clear in dimension 1.

In dimension 1, the quantization approach only achieves an accuracy of 1.2% for the finest meshes while
the regression and Malliavin approaches achieves a 0.3% error. In dimensions 2 and 3, it provides good
results but the accuracy of the two other approaches is much better. Results in dimension greater than 4
shows that far more quantization points are needed.

On figures 12 and 13, we provide the results obtained for the Bermudean basket put option. It confirms

3 Here and below, the number of points corresponds to the sum of the numbers of points used at each time step. There are

distributed according to [2]

22

our previous observations.

5.3. Numerical results on hedging policies

In figures 14 and 15, we provide the results obtained by combining the regression and the Malliavin
approach with the representations (8) and (10) for the Bermudean geometric put option. We provide the
results obtained by using the representation (10) for the digital option. We only provide the results for prices
computed with Algorithm A1, Algorithm A2 being less accurate.

In the figures, we use the following terminology:
- Regression algorithm A1 means that prices are computed by using algorithm A1 and the regression

based technic.
- Malliavin algorithm A1 means that prices are computed by using algorithm A1 and the Malliavin based

representation of conditional expectations.
- equation (8), resp. (10), means that we then use the representation of the delta given in (8), resp. (10).

Note that the problem is symmetric in the different components, so that only one figure is provided. For
more clarity, we normalize our result by dividing the estimation by the true value computed by analytical
methods.

Both representations seem to provide equally good results.

References

[1] V. Bally and G. Pagès: Error analysis of the quantization algorithm for obstacle problems, Stochastic Processes and their

Applications, 106, 1-40, 2003.

[2] V. Bally, G. Pagès, J. Printems : A quantization method for pricing and hedging multi-dimensional American style options,

Mathematical Finance , 15, 1, 2005.

[3] O. Bardou, S. Bouthemy and G. Pagès: Optimal quantization for the pricing of swing options, Applied Mathematical
Finance, 16(2), 183-217, 2009.

[4] J.-L. Bentley and M.-I. Shamos: Divide-and-Conquer in multidimensional space, Proc. Eighth ACM Annual Symp. on
Theory of Comput, 220-230, 1976.

[5] M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf: Computational geometry, Springer, 2000.

[6] B. Bouchard and J.-F. Chassagneux: Discrete time approximation for continuously and discretely reflected BSDE’s,

Stochastic Processes and their Applications, 118, 2269-2293, 2008.

[7] B. Bouchard, I. Ekeland and N. Touzi: On the Malliavin approach to Monte Carlo approximation of conditional

expectations, Finance and Stochastics, 8(1), 45-71, 2004.

[8] B. Bouchard, E. Elie and N. Touzi: Discrete-Time Approximation of BSDEs and Probabilistic Schemes for Fully Nonlinear

PDEs, Radon Series Comp. Appl. Math., 8, 133, de Gruyter ed., 2009.

[9] B. Bouchard and N. Touzi : Discrete-time approximation and Monte Carlo simulation of backward stochastic differential
equations, Stochastic Processes and their Applications, 111, 175-206, 2004.

[10] M. Broadie and P. Glasserman: Estimating security price derivatives using simulation, Manag. Sci., 42, 269285, 1996.

[11] J.-F. Carrière: Valuation of the Early-Exercise Price for Options using Simulations and Nonparametric Regression,
Insurance : mathematics and Economics, 19, 19-30, 1996.

[12] A. R. Choudhury, A. King, S. Kumar and Y. Sabharwal: Optimizations in Financial Engineering: The Least-Squares Monte
Carlo method of Longstaff and Schwartz, preprint.

[13] E. Clément, D. Lamberton and P. Protter: An analysis of a least squares regression method for American option pricing,

Finance and Stochastics, 6, 449-472, 2002.

[14] J. Detemple, R. Garcia and M. Rindisbacher: Asymptotic Properties of Monte Carlo Estimators of Derivatives, Management

science, 51(11), 1657-1675, 2005.

[15] N. El Karoui: Les aspects probabilistes du contrôle stochastique, Ecole d’Eté de Probabilités de Saint Flour IX, Lecture

Notes in Mathematics 876, Springer Verlag, 1979.

23

[16] E. Fournier, J.-M. Lasry, J. Lebuchoux and P.-L. Lions: Applications of Malliavin calculus to Monte Carlo methods in

finance II, Finance and Stochastics, 5, 201-236, 2001.

[17] E. Fournier, J.-M. Lasry, J. Lebuchoux, P.-L. Lions and N. Touzi: Applications of Malliavin calculus to Monte Carlo
methods in finance, Finance and Stochastics, 3, 391-412, 1999.

[18] P. Glasserman: Monte Carlo Method in Finance Engineering, Springer, 2004.

[19] E. Gobet: Revisiting the Greeks for European and American options, Proceedings of the ”International Symposium on
Stochastic Processes and Mathematical Finance” at Ritsumeikan University, Kusatsu, Japan, 2003.

[20] E. Gobet, J.P. Lemor, X. Warin: A regression-based Monte-Carlo method to solve backward stochastic differential equations,

Annals of Applied Probability, 15(3), 2172-2002, 2005.
[21] S. Graf and H. Luschgy: Foundations of quantization for probability distributions, Lec. Notes in Math., 1730, Springer,

Berlin, 2000.

[22] J. JaJa, C. Mortensen and Q. Shi: Space Efficient and Fast Algorithms for Multidimensional Dominance Reporting and
Counting, Proceedings of the 2004 Annual Symposium on Algorithms and Computation, Hong Kong, 2004.

[23] A. Kohatsu-Higa and R. Pettersson: Variance reduction methods for simulation of densities on Wiener space, SIAM Journal
on Numerical Analysis, 40, 431-450, 2002.

[24] P.-L. Lions and H. Regnier: Calcul du prix et des sensibilités d’une option américaine par une méthode de Monte Carlo,

preprint, 2001.
[25] F. Longstaff and E. Schwartz: Valuing American options by simulation: A simple least-squares, Review of Financial Studies,

1(14), 113-147, 2001.

[26] J. Ma and J. Zhang: Representations and regularities for solutions to BSDEs with reflections, Stochastic processes and
their applications, 115, 539-569, 2005.

[27] C. Makris and A.-K. Tsakalidis: Algorithms for three dimensional domiannce searching in linear space, Information

Processing Letters, 66, 6, 1998.
[28] J. McNames: A Fast Nearest-Neighbor Algorithm Based on a Principal Axis Search Tree, IEEE Transactions on Pattern

Analysis and Machine Intelligence, 23(9), 964-976, 2001.

[29] Y. Nekrich: A Data Structure for Multi-Dimensional Range Reporting, 23rd ACM Symposium on Computational Geometry,
2007.

[30] G. Pagès, H. Pham, J. Printems: Optimal quantization methods and applications to numerical problems in finance,
Handbook on Numerical Methods in Finance (S. Rachev, ed.), Birkhauser, Boston, 253-298, 2004.

[31] G. Pagès and J. Printems: Optimal quadratic quantization for numerics: the Gaussian case, Monte Carlo Methods &

Applications , 2, 9, 135-166, 2003.
[32] G. Pagès and J. Printems: Functional quantization for numerics with an application to option pricing, Monte Carlo Methods

& Applications , 4, 11, 407-446, 2005.

[33] G. Pagès and J. Printems: Optimal quantization for finance: from random vectors to stochastic processes, in Handbook of
Numerical Analysis, XV, Elsevier, North Holland, 595-648, 2008.

[34] V.-V. Piterbarg: Risk sensitivities of Bermuda options, Technical report, Bank of America,

http://ssrn.com/abstract=367920, 2002.
[35] F.-P. Preparata and M.-I.Shamos: Computational geometry (an introduction), Springer, 1985.

[36] J.-N. Tsitsiklis and B. Van Roy: Optimal Stopping of Markov Processes: Hilbert Spaces theory, Approximations Algorithms

and an application to pricing high-dimensional financial derivatives, IEEE Transactions on Automatic Control, 10(44),
1840-1851, 1999.

24

(a) 1D (b) 2D

(c) 3D (d) 4D

(e) 5D (f) 6D

Fig. 7. Comparison between the regression and the Malliavin based methods for the Bermudean geometric put option

25

Dimension 1D 1D 2D 2D 3D 3D 4D 4D 5D 5D 6D 6D

thousands of particules 8 256 256 1024 256 2000 250 2000 500 2000 1000 2000

ln number of particules 8.98 12.45 12.45 13.84 12.45 14.50 12.42 14.50 13.12 14.50 13.81 14.50

Regression 0.025 0.80 0.38 6.6 2.45 20.8 3.3 28. 10. 39.2 36. 65.

Malliavin 0.020 0.95 1.03 23.5 31. 360. 256. 2782 694 4010 3650. 9080.

Fig. 8. Time spent for calculation of the Malliavin and Regression based approaches for different numbers of particules

26

(a) 1D (b) 2D

(c) 3D (d) 4D

(e) 5D (f) 6D

Fig. 9. Convergence of the quantization method for the geometric Bermudean put option

27

(a) 1D (b) 2D

(c) 3D (d) 4D

(e) 5D (f) 6D

Fig. 10. Comparison between the regression and the Malliavin approaches for the Bermudean geometric digital option

28

(a) 1D (b) 2D

(c) 3D (d) 4D

(e) 5D (f) 6D

Fig. 11. Convergence of the quantization method for the geometric Bermudean digital option

29

(a) 1D (b) 2D

(c) 3D (d) 4D

(e) 5D (f) 6D

Fig. 12. Comparison between the regression and the Malliavin based methods for the Bermudean basket put option

30

(a) 1D (b) 2D

(c) 3D (d) 4D

(e) 5D (f) 6D

Fig. 13. Convergence of the quantization method for the Bermudean basket put option

31

(a) 1D (b) 2D

(c) 3D (d) 4D

(e) 5D (f) 6D

Fig. 14. Convergence of the delta for the geometric Bermudean put option

32

(a) 1D (b) 2D

(c) 3D (d) 4D

(e) 5D (f) 6D

Fig. 15. Convergence of the delta for the geometric Bermudean digital option

33

Laboratoire de Finance des Marchés de l’Énergie
Institut de Finance de Dauphine, Université Paris-Dauphine

1 place du Maréchal de Lattre de Tassigny
75775 PARIS Cedex 16

www.fime-lab.org

