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Abstract: This paper considers Dynamic Conditional Correlations (DCC) GARCH models

in which the time-varying coefficients, including the conditional correlation matrix, are

functions of the realizations of an exogenous stochastic process. Time series generated by

this model are in general nonstationary. Necessary and sufficient conditions are given for

the existence of non-explosive solutions, and for the existence of second-order moments of

these solutions. Potential applications concern the modeling of the volatility of a vector of

energy prices, the model coefficients depending on the weather conditions.

Keywords: Dynamic conditional correlation, Existence of nonexplosive solutions, Multi-

variate GARCH, Nonstationary processes, Time-varying models.

1 Introduction

Multivariate GARCH models are used heavily within the field of financial econometrics to

capture the comovements of financial returns. For instance the conditional Value at Risk

of a portfolio, depends on the conditional variances and covariances of the assets in the

portfolio. Plenty of multivariate GARCH formulations have been proposed and studied,

including the Constant Conditional Correlation (CCC) model introduced by Bollerslev

(1990), and the Dynamic conditional Correlation (DCC) models proposed by Tse and Tsui

(2002) and Engle (2002). Recent reviews on the literature on multivariate GARCH models

are Bauwens, Laurent and Rombouts (2006), Silvennoinen and Teräsvirta (2009). See also
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the textbook by Francq and Zakoian (2010a).

While modeling volatility of multivariate stationary time series has been the main center

of attention, understanding the comovements of non stationary series is of great practical

importance. In particular, energy prices are subject to complex seasonalities. For such

series, the classical multivariate GARCH approach is inappropriate because the only non

explosive solutions of GARCH-type models are stationary processes.

The model studied in this paper is a multivariate model extending the CCC GARCH

model, and also related to DCC GARCH. It combines two effects, which have been in-

troduced separately in the GARCH literature. First, it allows for the leverage effect and,

more generally, to asymmetric impacts of the past positive and negative returns on the

current volatility. Recent papers dealing with such asymmetries in the multivariate frame-

work are McAleer, Hoti and Chan (2009), McAleer, Chan, Hoti and Liebermann (2009),

Francq and Zakoian (2010b). Secondly, its coefficients are functions of an observed pro-

cess, allowing to capture the influence of exogenous variables on the series of interest. In

this model, the coefficients of the volatilities of the components of a vector time series are

driven by the observations of a discrete stochastic process. The model of this paper can

be seen as a time-varying coefficients specification. Models with periodic coefficients have

been proposed by Basawa and Lund (2001), among others, and in the GARCH framework

by Bollerslev and Ghysels (1996). However, periodic models can be found too restrictive

when the change of dynamics do not appear regularly. Time series models in which the

coefficients are subordinated to an exogenous process have been recently proposed and

analyzed for the conditional mean by Bibi and Francq (2003), Francq and Gautier (2004a,

2004b), and for the conditional variance by Regnard and Zakoian (2010a, 2010b).

The paper is organized as follows. In Section 2, we discuss the model assumptions

and provide examples of sample paths. In Section 3, we derive conditions ensuring the

existence of non explosive solutions. We also give conditions ensuring that these solutions

belong to L2. Proofs are provided in Section 4.
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2 Model and examples

We consider the m-dimensional process {ǫt = (ǫ1t, . . . , ǫmt)
′}, solution of the model



























ǫt = H
1/2
t ηt,

Ht = DtR0(st)Dt, Dt = diag
(√

h11,t, . . . ,
√

hmm,t

)

,

ht = ω0(st) +

q
∑

i=1

A0i,+(st)ǫ
+
t−i +A0i,−(st)ǫ

−
t−i +

p
∑

j=1

B0j(st)ht−j ,

(2.1)

where where ht = (h11,t, . . . , hmm,t)
′ and (with x+ = max(x, 0) = (−x)−)

ǫ+t =
(

{

ǫ+1t
}2

, · · · ,
{

ǫ+mt

}2
)′

, ǫ−t =
(

{

ǫ−1t
}2

, · · · ,
{

ǫ−mt

}2
)′

,

(ηt) is an iid sequence of variables on R
m with identity covariance matrix, (st) is a sequence

of numbers with values in a finite set E = {e1, . . . , ed}, and for any s ∈ E, R0(s) is a

correlation matrix, ω0(s) is a vector of size m×1 with strictly positive coefficients, A+
0i(s),

A
−
0i(s) and B0j(s) are matrices of size m×m with positive coefficients.

When d = 1, or equivalently when the functions R0(·), ω0(·), A0i(·) and B0j(·) are

constant, this model coincides with the formulation referred to as the extended CCC-

GARCH(p, q) by He and Teräsvirta (2004), and recently studied by Francq and Zakoian

(2010b).1 When m = 1 and when no asymmetry is introduced, this model coincides with

the univariate model studied by Regnard and Zakoian (2010a, 2010b).

The inclusion of positive and negative parts of the noise allows to take into account

the so-called leverage effect. Indeed, many studies have documented the fact that past

negative returns tend to have more impact on the current volatility than past positive ones

of the same module. As is Francq and Zakoian (2010b) a cross-leverage effect is introduced,

the positive and negative past values of any component being involved in the volatilities

of all components. An additional effect, which is the novelty of this model, is due to the

presence of the realizations (st). For instance, the leverage effect is allowed to change in

time, depending on the sequence (st). Similarly, the correlations between the components

of the noise (ηt) depend on the st’s. In this sense it is also related to the family of the

DCC GARCH models.

To fix ideas, suppose that (st) is a sequence of temperature levels, driving the volatility

of energy prices. Given the importance of temperature in the demand for energy prices, it

1In the simplest CCC-GARCH model introduced by Bollerslev (1990) the matrices Ai and B0j are

diagonal.
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is not surprising that the volatility of such prices be influenced by temperature. Regnard

and Zakoian (2010b) found evidence of d = 5 regimes for the volatility of gas prices. In

moderate-temperature periods, the returns volatility was found to be more influenced by

the most recent past returns than in high or low-temperature periods.

Note that the standard assumption Eηt = 0 allows to interpret Ht as the volatility (i.e.

the conditional variance) of ǫt, but this assumption is not required in the sequel.

Example 2.1 (Bivariate ARCH(1) model) The simplest model of this class is the bi-

variate model with p = 0 and q = 1, for which a more explicit form can be given. In this

case, Model (2.1) writes



























































ǫt =





√
h11t 0

0
√
h11t









1 ρ(st)

ρ(st) 1



 ηt,

h11t = ω1(st) + α11,+(st)
{

ǫ+1,t−1

}2
+ α12,+(st)

{

ǫ+2,t−1

}2

+α11,−(st)
{

ǫ−1,t−1

}2
+ α12,−(st)

{

ǫ−2,t−1

}2

h22t = ω2(st) + α21,+(st)
{

ǫ+1,t−1

}2
+ α22,+(st)

{

ǫ+2,t−1

}2

+α21,−(st)
{

ǫ−1,t−1

}2
+ α22,−(st)

{

ǫ−2,t−1

}2

(2.2)

with αij,+(·), αij,−(·) ≥ 0 and ωi(·) > 0, for i = 1, 2, and ρ(·) ∈ (−1, 1). For the sake of

illustration, Figure 1 displays two sets of simulations of length n = 100 of Model (2.2), with

the parameter values displayed in Table 1. The sequence (ηt) is drawn from a standard

bivariate Gaussian distribution. The (st) of the left panel is generated from a Bernoulli

distribution, with P (st = 1) = 0.8 = 1 − P (st = 0). The simulations of the right panel

are obtained by inverting the regimes, that is for the sequence (s∗t ) = (1 − st), with the

same realization of the noise (ηt). With this choice of parameters, the volatility of ǫ2,t

only depends on its past values whereas the volatility of ǫ1,t depends on the past values of

both components. Moreover, the leverage effect is present only when st = 1 and there is

no cross leverage effect: the volatility of each component is higher when the past values of

this component are negative rather than positive, but is not influenced by the sign of the

past values of the other component. It can also be noted that a strong positive correlation

is introduced in the regime st = 1, this correlation being small and negative in the regime

st = 0. Some of these effects can be detected by inspecting the sample paths provided in

this figure.

Figure 2 displays another simulation, in which (st) is the realization of a Poisson dis-
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Table 1: Parameter values for the simulation of Model (2.2) in Figure 1

ρ ω1 ω2 α11,+ α12,+ α11,− α12,− α21,+ α22,+ α21,− α22,−

st = 1 0.9 1 1 0.1 0.2 0.5 0.2 0 0.1 0 0.5
st = 0 -0.1 1 1 0.3 0.1 0.3 0.1 0 0.3 0 0.3

Table 2: Parameter values for the simulation of Model (2.2) in Figure 2

ρ ω1 ω2 α11,+ α12,+ α11,− α12,− α21,+ α22,+ α21,− α22,−

st = 0 0.1 1 1 0.1 0.1 0.1 0.1 0.1 0.1 0 0.1
st = 1 0.3 1 1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
st = 2 0.5 1 1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
st = 3 0.9 1 1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
st = 4 0.95 1 1 2 2 2 2 2 2 2 2

tribution with mean 0.7. For simplicity, the volatilities of the two components were taken

symmetric, that is: αij,· = 0 for i 6= j, and αii,+(·) = αii,−(·) = α(·) for i = 1, 2. The

regimes s(t) = i when i increases correspond to increasing volatilities and increasing corre-

lations between the noise components. It is seen that, despite the presence of large ARCH

coefficients in the regimes st = 3 and st = 4, the process is not explosive because the

frequency of occurrence of such regimes is low.

Example 2.2 (Periodic model) Suppose that the sequence (st) is purely periodic, that

is st+m = st for some m > 1 and for any t. In this case, Model (2.1) can be called a

Periodic CCC model. In the univariate framework, Periodic-GARCH models were studied

by Bollerslev and Ghysels (1996), Aknouche and Bibi (2009).

Figure 3 displays a simulation, in which (st) is a purely periodic sequence of 0 and 1.

The volatilities of the two series are strongly related in the regime st = 1: the volatility

coefficients are the same in the two regimes, with a strong asymmetry only related to

the sign of the first component, and the noise correlation is strong. On the contrary, the

volatilities are disconnected in the regime st = 0: volatilities of the two components only

depend on their own lagged value, with a small (resp. large) ARCH coefficient for the

first (resp. second) component. Moreover, the correlation coefficient ρ is equal to zero in

this regime. This choice of coefficients entails patterns which can be easily noticed in the

sample path of Figure 3.

Other simulations not reported here show that models with large coefficients are explosive.
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Figure 1: Simulations of Model (2.2) with the parameter values of Table 1 and ηt ∼ N (0, I2). Left panel:

realization (st) of a B(1, 0.8) (top), (ǫ1t) (middle) and (ǫ2t) (bottom). Right panel: realization (1 − st)

(top), (ǫ1t) (middle) and (ǫ2t) (bottom).

Table 3: Parameter values for the simulation of Model (2.2) in Figure 3

ρ ω1 ω2 α11,+ α12,+ α11,− α12,− α21,+ α22,+ α21,− α22,−

st = 1 0.8 1 1 0.1 0.1 0.6 0.1 0.1 0.1 0.6 0.1

st = 0 0 1 1 0.1 0 0.1 0 0 0.6 0 0.6
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Figure 2: Simulations of Model (2.2) with the parameter values of Table 2 and ηt ∼ N (0, I2). Realization

(st) of a P(0.7) distribution (top), (ǫ1t) (middle) and (ǫ2t) (bottom).
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Figure 3: Simulations of Model (2.2) with the parameter values of Table 3 and ηt ∼ N (0, I2). Periodic

sequence (st) (top), (ǫ1t) (middle) and (ǫ2t) (bottom).
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It is therefore necessary to obtain stability conditions, indicating which parameter values

are likely to be compatible with real series.

3 Stability conditions

We introduce the following assumption.

A0: (st) is a realization of a process (St) which is stationary, ergodic, defined on the same

probability space (Ω,A,P) as (ηt), and independent of (ηt).

For instance, (St) could be a Markov chain on E. However, even in this case, the pro-

posed model is very different from the so-called Markov-switching models introduced by

Hamilton (1989). In such models, the process (St) is hidden, while it is observed in our

model. Moreover, under appropriate conditions, Markov-switching models have stationary

solutions. On the contrary, a solution (ǫt) to Model (2.1), when existing, is in general non

stationary because the model is conditional on (st).

3.1 Existence of non explosive solutions

The existence of nonexplosive solutions to Model (2.1) requires additional conditions. In

this section we are interested in nonanticipative solutions (ǫt), i.e. such that ǫt is a function

of the variables ηt−i, i ≥ 0, for a given sequence (st).

Write

ǫt = Dtη̃t, where η̃t = (η̃1t, . . . , η̃mt) = R
1/2
0 (st)ηt (3.1)

and

ǫ+t = Υ+
t (st)ht, ǫ−t = Υ−

t (st)ht, where Υ◦
t (st) = diag

{

(η̃◦1t)
2, . . . , (η̃◦mt)

2
}

. (3.2)

Introducing the m× pm matrix B01:p(st) = (B01(st) · · ·B0p(st)), and similar other nota-

tions, let the (p+ 2q)m× (p+ 2q)m matrix

C(ηt, st) =





























Υ+
t (st)A01:q,+(st) Υ+

t (st)A01:q,−(st) Υ+
t (st)B01:p(st)

I(q−1)m 0(q−1)m×(p+q+1)m

Υ−
t (st)A01:q,+(st) Υ−

t (st)A01:q,−(st) Υ−
t (st)B01:p(st)

0(q−1)m×qm I(q−1)m 0(q−1)m×(p+1)m

A01:q,+(st) A01:q,−(st) B01:p(st)

0(p−1)m×2qm I(p−1)m 0(p−1)m×m





























(3.3)
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Let ‖ ·‖ denote any norm on the space of the (p+2q)m× (p+2q)m matrices. Note that by

replacing the observation st by the variable St we obtain a matrix which is a function of the

strictly stationary and ergodic process (ηt, St), and thus we obtain a strictly stationary and

ergodic sequence of random matrices {C(ηt, St), t ∈ Z}. Moreover E log+ ‖C(η1, S1)‖ <

∞. We may thus introduce γ(C0), the top Lyapunov exponent of the sequence C0 =

{C(ηt, St), t ∈ Z}, defined by

γ(C0) = lim
t→∞

1

t
E (log ‖C(ηt, St)C(ηt−1, St−1) . . . C(η1, S1)‖)

= inf
t≥1

1

t
E(log ‖C(ηt, St)C(ηt−1, St−1) . . . C(η1, S1)‖)

= lim
t→∞

a.s.
1

t
log ‖C(ηt, St)C(ηt−1, St−1) . . . C(η1, S1)‖.

We are now in a position to state the following result.

Theorem 3.1 Suppose that A0 holds. Then, a necessary and sufficient condition for

the existence of a nonanticipative solution to Model (2.1), for almost all sequence (st), is

γ(C0) < 0. Moreover this solution is unique and is given by

ǫt = {diag(z2q+1,t)}1/2R
1/2
0 (st)ηt (3.4)

where z2q+1,t denotes the (2q + 1)-th sub-vector of size m of

zt = b(ηt, st) +

∞
∑

n=0

C(ηt, st)C(ηt−1, st−1) · · ·C(ηt−n, st−n)b(ηt−n−1, st−n−1) (3.5)

and b(ηt, st) =
(

ω′
0(st)Υ

+
t (st), 0

′
m(q−1), ω

′
0(st)Υ

−
t (st), 0

′
(q−1)m, ω′

0(st), 0
′
(p−1)m

)′
.

Remark 3.1 When d = 1, that is when the model coefficients are constant, we retrieve

the condition established by Francq and Zakoian (2010b): in this case, the solution is

strictly stationary, as a function of the process (ηt). In the general case, the distribution

of ǫt depends on the coefficients st, st−1, . . . and is thus time-dependent.

Remark 3.2 When m = 1, that is in the univariate setting, we obtain a condition which

is similar to the one established by Regnard and Zakoian (2010a) for symmetric volatilities.

Indeed, when m = 1, the coefficient γ(C0) reduces to

γ(C0) = E (log |C(η1, S1)|) =
d

∑

i=1

E (log |C(η1, ej)|) πj,

because the process (ηt, St) is stationary and ergodic.
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Remark 3.3 In the ARCH case, that is when B0j = 0, j = 1, . . . , p, the stability

condition takes a simpler form. Introducing the 2qm× 2qm matrix

C∗(ηt, st) =

















Υ+
t (st)A01:q,+(st) Υ+

t (st)A01:q,−(st)

I(q−1)m 0(q−1)m×(q+1)m

Υ−
t (st)A01:q,+(st) Υ−

t (st)A01:q,−(st)

0(q−1)m×qm I(q−1)m 0(q−1)m×m

















, (3.6)

the stability condition takes the form γ(C∗
0
) < 0 where γ(C∗

0
) is the top Lyapunov exponent

of the sequence {C∗(ηt, St), t ∈ Z}.

The top Lyapunov exponent γ(C0) is greater than that of the matrix obtained by

replacing all blocks of C(ηt, St) by null matrices, except the right-lower pm × pm block.

From this observation, we can deduce a necessary condition for the existence of a solution.

Corollary 3.1 Let

B0(St) =





B01:p(St)

I(p−1)m 0(p−1)m×m



 .

Then, γ(C0) < 0 implies γ(B0) < 0.

The following result shows that the stability condition entails the existence of moments

of small order. A similar property was proven in the univariate GARCH framework by

Berkes, Horváth and Kokoszka (2003).

Corollary 3.2 Suppose γ(C0) < 0. Let ǫt be the strictly stationary and non anticipative

solution of Model (2.1). There exists s > 0 such that E‖ht‖s < ∞ and E‖ǫt‖2s < ∞.

3.2 Existence of a solution in L
2

We now turn to the existence of second-order moments.

Theorem 3.2 Let πi = P (St = ei), for i = 1, . . . , d. Suppose that A0 holds. Then if

d
∏

j=1

{E‖C(η1, ej)‖}πj < 1, (3.7)

the solution defined in Theorem 3.1 has finite second-order moments.
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Note that the second-order stationarity of the GARCH regimes, that is, E‖C(η1, ej)‖ < 1

for all j, is sufficient but non necessary for the global second-order condition. Note also

that the condition (3.7) does not involve the dependence structure of the process (St). In

general, this is not the case of the condition γ(C0) < 0 ensuring the existence of a solution.

Under (3.7), the second-order moments of the components of (ǫt) can be obtained using

the expansion (3.5). We have, using the independence of the variables ηt,

Ezt = Eb(η1, st) +
∞
∑

n=0

EC(η1, st)EC(η1, st−1) · · ·EC(η1, st−n)Eb(η1, st−n−1).

It is clear from this formula that the second-order moments of the components of ǫt are

time-dependent, whenever (st) is non constant.

4 Proofs

4.1 Proof of Theorem 3.1

Following the approach developed by Bougerol and Picard (1992a, 1992b) in the case of

univariate GARCH models, we introduce a Markov representation of Model (2.1). For

any vector Zt and any h > 0 we denote by Zt:(t−h) the vector (Z ′
t, . . . , Z

′
t−h)

′. Let zt =
(

ǫ+
′

t:(t−q+1), ǫ
−′

t:(t−q+1), h
′
t:(t−p+1)

)′
. In view of (3.2) and (2.1), we have

zt = b(ηt, st) + C(ηt, st)zt−1, (4.1)

Provided that the infinite sum converges, we thus have

zt = b(ηt, st) +

∞
∑

n=0

C(ηt, st)C(ηt−1, st−1) · · ·C(ηt−n, st−n)b(ηt−n−1, st−n−1) (4.2)

Cauchy’s root test shows that the series in (4.2) converges almost surely for all t if

lim
n→∞

a.s.
1

n
log ‖C(ηt, st)C(ηt−1, st−1) . . . C(ηt−n, st−n)b(ηt−n−1, st−n−1)‖ < 0.

Using a multiplicative norm, it suffices to show that

lim
n→∞

a.s.
1

n
log ‖C(ηt, st)C(ηt−1, st−1) . . . C(ηt−n, st−n)‖ < 0, (4.3)

lim
n→∞

a.s.
log ‖b(ηt−n−1, st−n−1)‖

n
= 0. (4.4)

The latter equality follows from the fact that E‖b(ηt−n−1, st−n−1)‖ < ∞ (see for instance

Francq and Zakoian (2010a), exercise 2.11). To prove (4.3), we use Lemma 5.2 in Regnard
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and Zakoian (2010a), which is a direct extension of Lemma 1 in Francq and Gautier

(2004a): if Xn = Xn(Sn, Sn−1, . . . , ηn, ηn−1, . . .) is a random variable which is measurable

with respect to the σ−field generated by {St, ηt, t ≤ n} and if Xn → X a.s., where X is a

random variable, then, for almost all sequence (st),

Xn(sn, sn−1, . . . , ηn, ηn−1, . . .) → X, a.s.

It follows that the limit in (4.3) is equal to γ(C0). Thus, when γ(C0) < 0, Cauchy’s root

test shows that the series in (4.2) converges almost surely for all t and satisfies (4.1). A

real-valued solution to Model (2.1) is then obtained as ǫt = {diag(z̃2q+1,t)}1/2R
1/2
0 (st)ηt.

This solution is thus non anticipative. The necessary part is proven following the same

lines as in Francq Zakoian (2010).

To prove uniqueness, let (zt) denote a positive and solution of (4.1). For all N ≥ 0,

zt = z̃t(N) + C(ηt, st) . . . C(ηt−N , st−N )zt−N−1,

where

z̃t(N) = bt +

N
∑

n=0

C(ηt, st) · · ·C(ηt−n, st−n)b(ηt−n−1, st−n−1).

Then

‖zt − z̃t‖ ≤ ‖z̃t(N)− z̃t‖+ ‖C(ηt, st) . . . C(ηt−N , st−N )‖‖zt−N−1‖.

The first term in the right-hand side tends to 0 a.s. when N → ∞. Using again Lemma 5.2

in Regnard and Zakoian (2010a), to prove that the second term tends to zero for almost

all sequence (st), it suffices to show that ‖C(ηt, St) . . . C(ηt−N , St−N )‖‖zS,t−N−1‖ tends to

zero, where zS,t is obtained by replacing the sequence (st) by (St) in (zt). Because the series

defining z̃S,t converges a.s., we have ‖C(ηt, St) . . . C(ηt−N , St−N )‖ → 0 with probability 1

when n → ∞. Moreover the distribution of ‖zS,t−N−1‖ is independent of N by stationarity.

It follows that ‖C(ηt, St) . . . C(ηt−N , St−N )‖‖zS,t−N−1‖ → 0 in probability as N → ∞. We

have shown that zt− z̃t → 0 in probability when N → ∞. This quantity being independent

of N we have, necessarily, z̃t = zt for any t, a.s., for almost all sequence (st).

4.2 Proof of Corollary 3.2

It is sufficient to prove that the norm of zt, as defined in (4.2), admits a moment of some

order r. Consider the multiplicative norm such that ‖A‖ =
∑

|aij |, for any matrix A =

(aij). By Lemma 2.2 in Francq and Zakoian (2010a), if X denotes a positive real random
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variable such that E logX < 0 and EXu > 0 for some u > 0, then EXr < 1 for some

r > 0. Now, because γ(C0) = inft≥1
1
t E(log ‖C(ηt, St)C(ηt−1, St−1) . . . C(η1, S1)‖) < 0,

there exists k0 such that E(log ‖C(ηk0 , Sk0)C(ηk0−1, Sk0−1) . . . C(η1, S1)‖) < 0. Moreover,

we have

E‖C(ηk0 , Sk0)C(ηk0−1, Sk0−1) . . . C(η1, S1)‖

=
∑

e1,...,ek0∈E

E‖C(ηk0 , ek0)C(ηk0−1, ek0−1) . . . C(η1, e1)‖P (Sk0 = ek0 , . . . , S1 = e1)

≤
∑

e1,...,ek0∈E

E(‖C(ηk0 , ek0)‖‖C(ηk0−1, ek0−1)‖ . . . ‖C(η1, e1)‖)P (Sk0 = ek0 , . . . , S1 = e1)

≤
∑

e1,...,ek0∈E

k0
∏

k=1

E(‖C(η1, ek)‖P (Sk0 = ek0 , . . . , S1 = e1) < ∞.

Using the aforementioned lemma, it follows that E‖C(ηk0 , Sk0) . . . C(η1, S1)‖r < 1 for some

r > 0. In what follows, we assume k0 = 2 without generality loss. We thus have, for some

r > 0,

E‖C(η2, S2)C(η1, S1)‖r =
∑

j,k∈{1,...,d}

E‖C(η2, ej)C(η1, ek)‖rπj,k < 1 (4.5)

where πj,k = P (S2 = ej , S1 = ek).

Now we have, in view of in (4.2),

‖zt‖ ≤ ‖b(ηt, st)‖+
∞
∑

n=0

‖C(ηt, st)C(ηt−1, st−1) · · ·C(ηt−n, st−n)b(ηt−n−1, st−n−1)‖

≤ ‖b(ηt, st)‖+
∞
∑

n=0

‖C(ηt, st)C(ηt−1, st−1)‖ · · · ‖C(ηt−n+1, st−n+1)C(ηt−n, st−n)‖

×‖b(ηt−n−1, st−n−1)‖. (4.6)

For r ∈ (0, 1] we have the elementary inequality (
∑

i ui)
r ≤ ∑

i u
r
i for any sequence of

positive numbers ui. Hence, since the sequence (ηt) is iid,

E‖zt‖r ≤ E‖b(ηt, st)‖r +
∞
∑

n=0

E‖C(η2, st)C(η1, st−1)‖r · · ·E‖C(η2, st−n+1)C(η1, st−n)‖r

×E‖b(η1, st−n−1)‖r.

For j = 1, . . . d let T (t, j, k, n) = {τ ∈ {1, . . . , n} | st−τ+1 = ej , st−τ = ek}. It follows that

E‖zt‖r ≤ E‖b(η1, st)‖r +
∞
∑

n=0

d
∏

j,k=1

{E‖C(η2, ej)C(η1, ek)‖r}|T (t,j,k,n)|

E‖b(η1, st−n−1)‖r. (4.7)
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Let un =
∏d

j,k=1{E‖C(η2, ej)C(η1, ek)‖r}|T (t,j,k,n)|E‖b(η1, st−n−1)‖r. We have

u1/nn =

d
∏

j,k=1

{E‖C(η2, ej)C(η1, ek)‖r}|T (t,j,k,n)|/n{E‖b(η1, st−n−1)‖r}1/n

→
d
∏

j,k=1

{E‖C(η2, ej)C(η1, ek)‖r}πj,k , a.s.

because (st) is a realization of the ergodic process (St). By (4.5) and the concavity of the

logarithm function, lim u
1/n
n < 1. It follows, by the Cauchy rule, that the infinite sum in

(4.7) converges, which completes the proof.

2

4.3 Proof of Theorem 3.2

It is sufficient to prove that zt, as defined in (4.2), belongs to L1. In view of (4.6), since

the sequence (ηt) is iid,

E‖zt‖

≤ E‖b(ηt, st)‖+
∞
∑

n=0

E‖C(η1, st)‖E‖C(η1, st−1)‖ · · ·E‖C(η1, st−n)‖E‖b(η1, st−n−1)‖.

For j = 1, . . . d let T (t, j, n) = {τ ∈ {0, . . . , n} | st−τ = ej}. It follows that

E‖zt‖ ≤ E‖b(η1, st)‖+
∞
∑

n=0

d
∏

j=1

{E‖C(η1, ej)‖}|T (t,j,n)|E‖b(η1, st−n−1)‖. (4.8)

Let un =
∏d

j=1{E‖C(η1, ej)‖}|T (t,j,n)|E‖b(η1, st−n−1)‖. We have

u1/nn =

d
∏

j=1

{E‖C(η1, ej)‖}|T (t,j,n)|/n{E‖b(η1, st−n−1)‖}1/n

→
d
∏

j=1

{E‖C(η1, ej)‖}πj , a.s.

because (st) is a realization of the ergodic process (St). By the Cauchy rule the infinite

sum in (4.8) converges and the property is proven.

2
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