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Abstract

In this paper, we present a probabilistic numerical algorithm combining dynamic programming,
Monte Carlo simulations and local basis regressions to solve non-stationary optimal multiple switching
problems in infinite horizon. We provide the rate of convergence of the method in terms of the time
step used to discretize the problem, of the size of the local hypercubes involved in the regressions,
and of the truncating time horizon. To make the method viable for problems in high dimension
and long time horizon, we extend a memory reduction method to the general Euler scheme, so that,
when performing the numerical resolution, the storage of the Monte Carlo simulation paths is not
needed. Then, we apply this algorithm to a model of optimal investment in power plants. This model
takes into account electricity demand, cointegrated fuel prices, carbon price and random outages of
power plants. It computes the optimal level of investment in each generation technology, considered
as a whole, w.r.t. the electricity spot price. This electricity price is itself built according to a new
extended structural model. In particular, it is a function of several factors, among which the installed
capacities. The evolution of the optimal generation mix is illustrated on a realistic numerical problem
in dimension eight, i.e. with two different technologies and six random factors.

1 Introduction

This paper presents a probabilistic numerical method for multiple switching problem with an application
to a new stylized long-term investment model for electricity generation. Since electricity cannot be stored
and building new plants takes several years, investment in new capacities must be decided a long time
in advance if a country wishes to be able to satisfy its demand1. Before the worldwide liberalization
of the electricity sector, electric utilities were monopolies whose objective was to plan the construction
of power plants in order to satisfy demand at the minimum cost under a given constraint on the loss
of load probability or on the level of energy non-served. This investment process was called generation
expansion planning (GEP). Its output was mostly a given set of power plants to build for the next ten or
twenty years (see [36] for a comprehensive description of the GEP methodology and related difficulties).
Despite thirty years of liberalization of the electricity sector, of the recognition that GEP methods were
inadequate within a market context ([34, 24]) and of an important set of alternative methods (see [28] and
[22] for recent surveys on generation investment models and softwares), power utilities still heavily rely
on GEP methods (see [3]). However, real option methods, which should have been the natural alternative
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valuation method for firms converted to a value maximizing objective, did not emerge as the method of
choice. Despite the important body of literature that followed [45]’s seminal paper, [23]’s monography
and implementations for electricity generation investment (see for instance [11]), real options still remain
a marginal way of assessing investment decisions both in the electric sector and in the industry in general
(see for instance, amongst the recurrent surveys on capital budgeting methods, [8]). Nevertheless, as
shown in [44], firms tend to reproduce with heuristic constraints (such as hurdle rate or profitability
index) the decision criteria given by real option methodology.
The main reason for this situation lies in the considerable mathematical difficulties involved in the con-
ception of a tractable yet realistic real option model for electricity generation. This difficulty reflects in
the literature where the main trend consists in designing a small dimensional (1 or 2) real option model
to assess investment behaviour with respect to some specific variables (see for instance [1, 9] for models in
dimension 2 analysing the effects of uncertainty and time to build). It is still possible to find investment
model in dimension 3 based on dynamic programming which are numerically tractable (see for instance
[46, 11] and Section 5 for comments). But, in higher dimension, because of the curse of dimensionality,
investment models mainly rely on decision trees to represent random factors (see [2] for a recent typical
implementation of this approach). The resulting tractability is however obtained at the expense of a
crude simplification of the statistical properties of the factors.
Our approach in the present paper takes advantage of the considerable progress made in the last ten
years by numerical methods for high-dimensional American options valuation problems to propose a
probabilistic way to look at future electricity generation mixes. For an up-to-date state of the art on this
subject, the reader is referred to the recent book [15].
In this paper, we first adapt the resolution of American option problems by Monte-Carlo methods ([43, 57])
to the more general class of optimal switching problems. The crucial choice of regression basis is done here
in the light of the work of [13], so as to obtain a stable algorithm suited to high-dimensional problems,
aiming at the best possible numerical complexity. The memory complexity, often acknowledged as the
major drawback of such a Monte Carlo approach (see [16]), is drastically slashed by generalizing the
memory reduction method from [18, 19, 20] to any stochastic differential equation. We provide a rigorous
and comprehensive analysis of the rate of convergence of our algorithm, taking advantage of the works
of, most notably, [12], [55] and [29]. Note that such features as infinite horizon and non-stationarity
are encompassed here. Finally, we build a long-term structural model for the spot price of electricity,
extending the work of [5] and [4] in several directions (cointegrated fuels and CO2 prices, stochastic
availability rate of production capacities, etc.). This model is itself incorporated into an optimal control
problem corresponding to the search for the optimal investments in electricity generation. The resolution
of this problem using our algorithm is illustrated on a simple numerical example with two different
technologies, leading to an eight-dimensional problem (demand, CO2 price, and, for each technology, fuel
price, random outages and the controlled installed capacity). The time evolution of the distribution of
power prices and of the generation mix is illustrated on a forty-year time horizon.
To sum up, the contribution of the paper is threefold. Firstly, it provides, for a suitably chosen regression
basis, a comprehensive analysis of convergence of a regression-based Monte-Carlo algorithm for a class of
infinite horizon optimal multiple switching problems, large enough to handle realistic short term profit
functions and investment cost structures with possible seasonality patterns. Secondly, it adapts and
generalizes a memory reduction method in order to slash the amount of memory required by the Monte
Carlo algorithm. Thirdly, a new stylised investment model for electricity generation is proposed, taking
into account electricity demand, cointegrated fuel prices, carbon price and random outages of power
plants, used as building blocks of a new structural model for the electricity spot price. A numerical
resolution of this investment problem with our algorithm is illustrated on a specific example, providing,
among many other outputs, an electricity spot price dynamics consistent with the investment decision
process in power generation.
The outline of the paper is the following. Section 2 describes the class of optimal switching problems
studied here, including the detailed list of assumptions considered. Section 3 describes the resolution
algorithm and analyzes its rate of convergence, in terms of the discretization step, of the size of the
local hypercubes from the regression basis, and of the truncating time horizon. Section 4 details the
computational complexity of the algorithm, as well as its memory complexity, along with the construction
of the memory reduction method. Finally, Section 5 introduces the extended structural model of power
spot price, the investment problem, as well as an illustrated numerical resolution. Section 6 concludes
the paper.
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Notation

Here are some notation that will be used throughout the paper:

• The notation 1 {.} stands for the indicator function.

• Throughout the paper, C > 0 denotes a generic constant whose value may differ from line to line, but
which does not depend on any parameter of our scheme.

• For any stochastic process X = (Xs)s≥0 taking values in a given set X , and any (t, x) ∈ R+ × X , we
denote as Xt,x = (Xt,x

s )s≥t the stochastic process with the same dynamics as X, but starting from x

at time t: Xt,x
t = x.

• For any (a, b) ∈ R× R, a ∧ b := min (a, b) and a ∨ b := max (a, b).

• ∀p ≥ 1, the norms ‖.‖p and ‖.‖Lp denote respectively the p−norm and the Lp- norm: ∀x ∈ Rn and
any R-valued random variable X such that E [|X|p] <∞:

‖x‖p = (
∑n
i=1 |xi|

p)
1
p , ‖X‖Lp = E [|X|p]

1
p

We recall that ∀p ≥ 1, ∀x ∈ Rn, ‖x‖p ≤ ‖x‖1 ≤ n
p−1
p ‖x‖p

2 Optimal switching problem

2.1 Formulation

Fix a filtered probability space
(

Ω,F ,F = (Ft)t≥0 ,P
)
, where F satisfies the usual conditions of right-

continuity and P-completeness. We consider the following general class of (non-stationary) optimal switch-
ing problems:

v (t, x, i) = sup
α∈At,i

E

ˆ ∞
t

f
(
s,Xt,x

s , Iαs
)
ds−

∑
τn≥t

k (τn, ζn)

 (2.1)

where:

• Xt,x = (Xt,x
s )s≥t is an Rd-valued, F-adapted markovian diffusion starting from Xt = x ∈ Rd, with

generator L.

• Iα = (Iαs )s≥0 is a càd-làg, Rd′ -valued, F-adapted piecewise constant process. It is controlled by a strat-
egy α, described below. We suppose it can only take values into a fixed finite set Iq = {i1, i2, . . . , iq},
q ∈ N∗ with i0 = 0

(
∈ Rd′

)
, which means that equation (2.1) corresponds to an optimal switching

problem.

• An impulse control strategy α corresponds to a sequence (τn, ιn)n∈N of increasing stopping times
τn ≥ 0, and Fτn -measurable random variables ιn valued in Iq. Using this sequence, Iα = (Iαs )s≥0 is
defined as follows:

Iαs = ι01 {0 ≤ s < τ0}+
∑
n∈N

ιn1 {τn ≤ s < τn+1} ∈ Iq

Alternatively, α can be described by the sequence (τn, ζn)n∈N, where ζn := ιn − ιn−1 (and ζ0 := 0).
Using this alternative sequence, Iα can be written as follows:

Iαs = ι0 +
∑
τn≤s

ζn ∈ Iq

• A is the set of admissible strategies: a strategy α belongs to A if τn → +∞ a.s. as n→∞.
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• For any (t, i) ∈ R+ × Iq, the set At,i ⊂ A is defined as the subset of admissible strategies α such that
Iαt = i.

• f and k are R-valued measurable functions.

2.2 Assumptions

We complete the above formulation with the following relevant assumptions.

Assumption 1. [Diffusion] The Rd-valued uncontrolled process X is a diffusion process, governed by the
dynamics

dXs = b (s,Xs) ds+ σ (s,Xs) dWs (2.2)
X0 = x0 ∈ Rd

where W is a d-dimensional Brownian motion, and b and σ are respectively Rd-valued and Rd×d-valued
functions.

Assumption 2. [Lipschitz] The functions b : R+ × Rd → Rd and σ : R+ × Rd → Rd×d are Lipschitz-
continuous (uniformly in t) with linear growth: ∃Cb, Cσ > 0 s.t. ∀t ∈ R+, ∀ (x, x′) ∈

(
Rd
)2:

|b (t, x)− b (t, x′)| ≤ Cb |x− x′|
|b (t, x)| ≤ Cb (1 + |x|)

|σ (t, x)− σ (t, x′)| ≤ Cσ |x− x′|
|σ (t, x)| ≤ Cσ (1 + |x|)

Remark 2.1. Assumption 2 is sufficient to prove the existence and uniqueness of a strong solution to the
SDE (2.2) (see for instance Theorem 4.5.3 in [37]).

Remark 2.2. Under Assumption 2, there exist, for every p ≥ 1, positive constants Cp and ρp such that
∀s ≥ t ≥ 0 and ∀x ∈ Rd:

E
[∣∣Xt,x

s

∣∣p] ≤ Cp (1 + |x|p) exp (ρp (s− t)) (2.3)

(use Burkholder-Davis-Gundy inequality and Gronwall’s Lemma, see for instance [37] Theorem 4.5.4 for
the even power case).

Assumption 3. [Lipschitz&Discount] The functions f and k decrease exponentially in time: ∃ρ > 0 s.t.
∀ (t, x, i, j) ∈ R+ × Rd × (Iq)2:

f (t, x, i) = e−ρtf̃ (t, x, i)
k (t, j − i) = e−ρtk̃ (t, j − i)

where the functions f̃ and k̃ are Lipschitz continuous with linear growth:

∃Cf , Ck > 0 s.t. ∀ {(t, x, i, j) , (t′, x′, i′, j′)} ∈
{
R+ × Rd × (Iq)2

}2
:∣∣f̃ (t, x, i)− f̃ (t′, x′, i′)

∣∣ ≤ Cf (|t− t′|+ |x− x′|+ |i− i′|)∣∣f̃ (t, x, i)
∣∣ ≤ Cf (1 + |x|)∣∣k̃ (t, j − i)− k̃ (t′, j′ − i′)
∣∣ ≤ Ck (|t− t′|+ |(j − i)− (j′ − i′)|)

Moreover, we assume in the following that ρ > ρ1 where ρ1 is defined in equation (2.3).

Assumption 4. [Fixed costs] The cost function k : R+ × Rd′ → R+ is such that:

• ∀t ∈ R+, k (t, 0) = 0.
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• ∃κ > 0 s.t. ∀t ∈ R+, ∀ (i, j) ∈ (Iq)2, {i 6= j} ⇒
{
k̃(t, j − i) ≥ κ

}
.

• (triangular inequality) ∀t ∈ R+, ∀ (i, j, k) ∈ (Iq)3 with i 6= j and j 6= k:
k(t, k − i) < k(t, j − i) + k(t, k − j) .

Remark 2.3. The economic interpretations of Assumption 4 are the following:

1. There is no cost for not switching, but any switch incurs at least a positive fixed cost.

2. At any given date, it is always cheaper to switch directly from i to k than to switch first from i to j
and then from j to k.

Remark 2.4. Under those standard assumptions, the value function v is well-defined and finite. Indeed,
using equation (2.3), ∀ (t0, t, x, i) ∈ R+ × R+ × Rd × Rd′ with t0 ≤ t and ∀α ∈ At0,i:

E
[ˆ ∞

t

∣∣f (s,Xt0,x
s , Iαs

)∣∣ ds] ≤ Cf

ˆ ∞
t

e−ρs
(
1 + E

[∣∣Xt0,x
s

∣∣]) ds
≤ Cf

(
e−ρt + (1 + |x|)

ˆ ∞
t

e−ρseρ1(s−t0)ds

)
≤ Cf (1 + |x|) e−ρ̄t−ρ1t0 (2.4)

where ρ̄ := ρ − ρ1 > 0 (Assumption 3). In particular, the costs being positive (Assumption 4), and
recalling (2.1), it holds that:

v (t, x, i) ≤ Cf (1 + |x|) e−ρt (2.5)

2.3 Outline of the solution

From a theoretical point of view, the value functions vi := v (., ., i), i ∈ Iq from equation (2.1) are
known to satisfy (under suitable conditions on fi (., .) := f (., ., i) and k, see for instance [53] in a much
more general setting) the following Hamilton-Jacobi-Bellman Quasi-Variational Inequalities (HJBQVI):
∀ (t, x, i) ∈ R+ × Rd × Iq

min
{
−∂vi
∂t

(t, x)− Lvi (t, x)− fi (t, x) , vi (t, x)− max
j∈IP , j 6=i

(vj (t, x)− k (t, j − i))
}

= 0 (2.6)

together with suitable limit condition.
Alternatively, the process v (t,Xt, i), t ≥ 0 can be characterized as the solution of a particular Reflected
Backward Stochastic Differential Equation ([33, 25]).
Moreover, the value function (2.1) satisfies the well-known dynamic programming principle, i.e., for any
stopping time τ ≥ t:

v (t, x, i) = sup
α∈At,i

E

ˆ τ

t

f
(
s,Xt,x

s , Iαs
)
ds−

∑
t≤τn≤τ

k (τn, ζn) + v
(
τ,Xt,x

τ , Iατ
) . (2.7)

From a practical point of view, apart from a few simple examples in low-dimension, finding directly the
solution of the HJBQVI (2.6) is usually infeasible, and the numerical PDE tools become cumbersome and
inefficient in the multi-dimensional setting. Instead, probabilistic methods based on (2.7), in the spirit
of [16], are usually more practical and versatile.
Indeed, as the diffusion X is not controlled, this optimal switching problem can be seen as an extended
American option problem. This suggests that, up to some adjustments, the probabilistic numerical tools
developed in this context (see [13] for instance) may be adapted to solve (2.1).
To be more specific, consider a variant v̂ of (2.1) such that the switching decisions can only take place
on a finite time grid Π = {t0 = 0 < t1 < . . . < tm = T} for a fixed T > 0. Then ∀i ∈ Iq , ∀x ∈ Rd, and
∀tk ∈ Π, the dynamic programming principle (2.7) becomes:

v̂i (tk, x) = max
{
Ei (tk, x) , max

j∈Iq, j 6=i
{v̂j (tk, x)− k (tk, j − i)}

}
(2.8)
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where:

Ei (T, x) := E
[ˆ ∞

T

fi
(
s,XT,x

s

)
dt

]
(2.9)

Ei (tk, x) := E
[ˆ tk+1

tk

fi
(
s,Xtk,x

s

)
dt+ v̂i

(
tk+1, X

tk,x
tk+1

)]
, k = m− 1, . . . , 0 (2.10)

and where the notation Xt,x := (Xt,x
s )s≥t refers to the process X conditioned on the initial value Xt = x.

If, moreover, the cost function k is such that at most one switch can occur on a given date tk (triangular
condition), then equation (2.8) can be simplified into:

v̂i (tk, x) = max
j∈Iq

{
Ej (tk, x)− k (tk, j − i) 1{j 6=i}

}
(2.11)

which is explicit in the sense that v̂. (tk, .) directly depends on v̂. (tk+1, .).
In practice, apart from the potential approximation of the stochastic process X and of the final values
(2.9), the difficulty lies in the efficient computation of the conditional expectations (2.10).
In the American option literature, various approaches have been developed to solve (2.11) efficiently.
Notable examples are the least-squares’ approach ([43, 57]), the quantization approach and the Malliavin
calculus based formulation (see [13] for a thorough comparison and improvements of these techniques).
In the spirit of [17], one may also consider non-parametric regression (see [38] and [56]) combined with
speeding up techniques like Kd-trees ([32, 40]) or the Fast Gauss Transform ([61, 47, 50, 54, 51]) in the
case of kernel regression.
Here, we intend to solve (2.1) on numerical applications which bears the particularity of handling stochas-
tic processes in high dimension (dim (X) = d � 3, with however dim (I) = d′ ≈ 3, see Section 5). For
such problems, the most adequate technique so far seems to be the local regression method developed in
[13]. We are thus going to make use of this specific method to solve (2.11) in practice.
In the following, we provide a detailed analysis of the above suggested computational method.

3 Numerical approximation and convergence analysis

This section is devoted to the precise description of the resolution of (2.1), along the lines of the discussions
from Subsection 2.3. Moreover, the convergence rate of the proposed algorithm will be precisely assessed.

3.1 Approximations

Recall equation (2.1) defining the value function v (t, x, i) :

v (t, x, i) = sup
α∈At,i

E

ˆ ∞
t

f
(
s,Xt,x

s , Iαs
)
ds−

∑
τn≥t

k (τn, ζn)

 (3.1)

We are going to consider the following sequence of approximations:

• [Finite time horizon] The time horizon will be truncated to a finite horizon T .

• [Time discretization] The continuous state process X and investment process I will be discretized with
a time step h.

• [Space localization] The Rd- valued process X will be projected into a bounded domain Dε, parame-
terized by ε.

• [Conditional expectation approximation] The conditional expectation involved in the dynamic pro-
gramming equation will be replaced by an empirical least-squares regression, computed on a bundle
of M Monte Carlo trajectories, on a finite basis of local hypercubes with edges of size δ.

The rate of convergence of the algorithm will then be provided, as a function of these five numerical
parameters: T , h, ε, M and δ.
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3.1.1 Finite time horizon

The first step is to reduce the set of strategies to a finite horizon:

vT (t, x, i) = sup
α∈AT

t,i

E

ˆ T

t

f
(
s,Xt,x

s , Iαs
)
ds−

∑
t≤τn≤T

k (τn, ζn) + gf
(
T,Xt,x

T , IαT
) (3.2)

gf (T, x, i) := E
[ˆ ∞

T

f
(
s,XT,x

s , i
)
ds

]
(3.3)

where 0 ≤ t ≤ T < +∞, and ATt,i ⊂ At,i is the subset of strategies without switches strictly after time
T . Hence the final value gf corresponds to the remaining gain after T .

Alternatively, one may choose, for convenience, another final value g instead of gf , as long as it is
Lipschitz-continuous and satisfies a suitable condition (cf. equation (3.21)). The set of such functions
will be denoted as Θgf . The difference between the two value functions is quantified in Proposition 3.1.

This freedom on the final values will be used in practice to avoid a computation on an infinite interval
[T,∞[ as in the definition of gf .

From now on, we choose and fix one such g ∈ Θgf .

3.1.2 Time discretization

Then, we discretize the time segment [0, T ]. Introduce a time grid Π = {t0 = 0 < t1 < . . . < tN = T}
with constant mesh h. Consider the following approximation:

vΠ (t, x, i) = sup
α∈AΠ

t,i

E

ˆ T

t

f
(
s,Xt,x

s , Iαs
)
ds−

∑
t≤τn≤T

k (τn, ζn) + g
(
T,Xt,x

T , IαT
) (3.4)

where AΠ
t,i ⊂ ATt,i is the subset of strategies such that switches can only occur at dates τn ∈ Π ∩ [t, T ].

Now, with a slight abuse of notation, we can safely switch from the notation α = (τn, ζn)n≥0 to the
notation α = (τn, ιn)n≥0 (remember Subsection 2.1), replacing the quantity

∑
t≤τn≤T k (τn, ζn) by∑

t≤τn≤T k
(
τn, I

α
τn−h, I

α
τn

)
or by

∑
t≤τn≤T k (τn, ιn−1, ιn), where k (t, i, j) = k(t, j − i). The error be-

tween vT and vΠ is quantified in Proposition 3.2.

Next we also approximate the stochastic process X by its Euler scheme X̄ =
(
X̄s

)
0≤s≤T , with dynamics:

dX̄s = b
(
π (s) , X̄π(s)

)
ds+ σ

(
π (s) , X̄π(s)

)
dWs , 0 ≤ s ≤ T (3.5)

X̄0 = x0 ∈ Rd

where ∀s ∈ [0, T ], π (s) := max {t ∈ Π; t ≤ s}. The new value function reads:

v̄Π (t, x, i) = sup
α∈AΠ

t,i

E

ˆ T

t

f
(
π (s) , X̄t,x

s , Iαs
)
ds−

∑
t≤τn≤T

k (τn, ιn−1, ιn) + g
(
T, X̄t,x

T , IαT
) (3.6)

The error between vΠ and v̄Π is computed in Proposition 3.3.

3.1.3 Space localization

Fix ε > 0. ∀t ∈ [0, T ], let Dεt be a bounded convex domain of Rd. In particular there exists C (t, ε) > 0
such that ∀x ∈ Dεt , |x| ≤ C (t, ε). Let Pεt : Rd → Rd denote the projection on Dεt . This domain is chosen
such that ∀s ∈ [0, t],

E
[∣∣X̄s − Pεt

(
X̄s

)∣∣] ≤ ε . (3.7)

Denote this projection as X̄ε
t :

X̄ε
t := Pεt

(
X̄t

)
7



In other words, X̄ε
t is equal to X̄t most of the time (i.e. when X̄t ∈ Dεt ), except when X̄t is outside Dεt ,

in which case X̄ε
t corresponds to the projection of X̄t onto Dεt .

Define v̄εΠ as the value function v̄Π from equation (3.6) with X̄ replaced by X̄ε. The error between those
two value functions is computed in Proposition 3.4.

Example 3.1. To clarify this construction of space localization, we explicit it on the very simple example
of a d-dimensional standard brownian motion (Wt)t∈[0,T ]. In this case, X̄t = Xt = Wt. Choose Dεt to be
a centered, symmetric hypercube: Dεt = [−C (t, ε) , C (t, ε)]d for some constant C (t, ε). Hence, ∀x ∈ Rd,
Pεt (x) := −C (t, ε)∧ x∨C (t, ε) component-wise. With this expressions, one can find a C (t, ε) such that
(3.7) holds. Indeed, ∀s ∈ [0, T ]:

E [|Ws − Pεt (Ws)|] ≤ E [|Wt − Pεt (Wt)|] = E
[
|Wt − C (t, ε)|1{|Wt|>C(t,ε)}

]
= 2dE

[(
W 1
t − C (t, ε)

)+]d
(3.8)

where W 1 is a one-dimensional Brownian motion. Hence, finding a value for C (t, ε) such that (3.7)
holds boils down to inverting Bachelier’s option pricing formula in order to get the strike as a function
of the price of the call option. This is done in [6], see [52], but under the form of a series expansion for
small moneyness, which is unsuitable for our purpose (because C (t, ε) → ∞ when ε → 0). Thus, we
are here only going to look for a simply invertible upper bound for (3.8). Denoting as N the cumulative
distribution function of a standard Gaussian random variable, and using the standard inequality 1 −
N (x) ≥ 1√

2π
x

x2+1e
− x2

2 :

E
[(
W 1
t −K

)+] =
ˆ +∞

K√
t

(
x
√
t−K

)
N ′ (x) dx =

√
t√

2π
e−

K2
2t −K

(
1−N

(
K√
t

))

≤
√
t√

2π

(
1 + K2

K2 + t

)
e−

K2
2t ≤ 2

√
t√

2π
e−

K2
2t

Inverting this last upper bound, the inequality (3.7) is satisfied with C (t, ε) =
√
t ln
(

8t
πε

2
d

)
.

3.1.4 Conditional expectation approximation

From now on, in order to prevent the notation from becoming too cumbersome and clumsy, we are going
to drop the ε index in the following, i.e. X̄t will stand for X̄ε

t , and v̄Π for v̄εΠ.
For the fully discretized problem (3.6), the dynamic programming principle (2.11) becomes:

v̄Π (T, x, i) = g (T, x, i)

v̄Π (tn, x, i) = max
j∈Iq

{
hf (tn, x, j)− k (tn, i, j) + E

[
v̄Π

(
tn+1, X̄

tn,x
tn+1

, j
)]}

, n = N − 1, . . . , 0 (3.9)

The last step is to approximate the conditional expectation appearing in equation (3.9). As discussed
in Subsection 2.3, we choose to approximate it using the following regression procedure. Consider basis
functions (ek (x))1≤k≤K , K ∈ N ∪ {+∞}, x ∈ Rd. For suitable functions ϕ : Π× Rd × Iq → R, define:

λ̃ = λ̃tni (ϕ) := arg min
λ∈RK

E

(ϕ (tn+1, X̄tn+1 , i
)
−

K∑
k=1

λkek
(
X̄tn

))2 (3.10)

As truncating the approximated conditional expectations is a necessity in theory as well as in practice
(see [12, 30, 55]), suppose that there exist known bounds Γtn,x (ϕ) and Γtn,x (ϕ) on E

[
ϕ
(
tn+1, X̄

tn,x
tn+1

, i
)]

:
Γtn,x (ϕ) ≤ E

[
ϕ
(
tn+1, X̄

tn,x
tn+1

, i
)]
≤ Γtn,x (ϕ) (3.11)

Then, ∀i ∈ Iq the quantity E
[
ϕ
(
tn+1, X̄

tn,x
tn+1

, i
)]

is approximated by:

Ẽ
[
ϕ
(
tn+1, X̄

tn,x
tn+1

, i
)]

:= Γtn,x (ϕ) ∨
K∑
k=1

λ̃kek (x) ∧ Γtn,x (ϕ) (3.12)
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which is used to define the next approximation ṽΠ of the value function:

ṽΠ (T, x, i) = g (T, x, i)

ṽΠ (tn, x, i) = max
j∈Iq

{
hf (tn, x, j)− k (tn, i, j) + Ẽ

[
ṽΠ

(
tn+1, X̄

tn,x
tn+1

, j
)]}

, n = N − 1, . . . , 0(3.13)

Interesting discussions on the choice of function basis can be found in [13]. In particular they advocate
bases of local polynomials, which is numerically efficient and well-suited to tackle large-dimensional
problems (see Subsection 4.1). However, for the sake of simplicity, we will restrict our study in this
section to a basis of indicator functions on local hypercubes (as in [55] and [30]) (which is the simplest
example of local polynomials) as defined below:
For every tn ∈ Π, consider a partition of the domainDεtn into hypercubes

(
Bktn

)
k=1,...,Kε

, i.e., ∪k=1,...,KεB
k
tn =

Dεtn and Bitn ∩ B
j
tn = ∅ ∀i 6= j. It may be deterministic, or Ft-measurable. We only assume that there

exists (δ, δ) ∈ R2
+ with δ ≤ δ such that the lengths of the edges of the hypercubes, in each dimension,

belong to [δ, δ] (in particular, the volume of each hypercube Bktn belongs to
[
δd, δd

]
). This liberty over

the definition of the partition enables to encompass the kind of adaptative partition described in [13].
Then, the basis functions considered here are defined by ektn (x) := 1

{
x ∈ Bktn

}
, x ∈ Rd, 1 ≤ k ≤ Kε.

With this choice of function basis, the error between v̄Π and ṽΠ is computed in Proposition 3.5.

Finally, let
(
X̄m
tn

)1≤m≤M
1≤n≤N be a finite sample of size M of paths of the process X̄. The final step is to

replace the regression (3.10) by a regression on this sample:

λ̂ = λ̂tni (ϕ) := arg min
λ∈RK

1
M

M∑
m=1

(ϕ(tn+1, X̄
m
tn+1

, i
)
−

K∑
k=1

λkek
(
X̄m
tn

))2 . (3.14)

Then ∀i ∈ Iq the quantity E
[
ϕ
(
tn+1, X̄

tn,x
tn+1

, i
)]

is approximated by:

Ê
[
ϕ
(
tn+1, X̄

tn,x
tn+1

, i
)]

:= Γtn,x (ϕ) ∨
K∑
k=1

λ̂kek (x) ∧ Γtn,x (ϕ) (3.15)

leading to the final, computable approximation v̂Π of the value function:

v̂Π (T, x, i) = g (T, x, i)

v̂Π (tn, x, i) = max
j∈Iq

{
hf (tn, x, j)− k (tn, i, j) + Ê

[
v̂Π

(
tn+1, X̄

tn,x
tn+1

, j
)]}

, n = N − 1, . . . , 0(3.16)

The error between ṽΠ and v̂Π (in fact directy between v̄Π and v̂Π) with the same choice of function basis
is given in Proposition 3.6. This proposition will make use of the following quantity:

p (tn, δ, ε) := min
t∈Π∩[0,tn]

min
Bkt ⊂Dεt

P
(
X̄t ∈ Bkt

)
(3.17)

which is strictly positive, as the domains Dεt , t ∈ [0, T ] are bounded. More precisely, only lower bounds
of these quantities will be required.

Example 3.2. Carrying on with Example 3.1 of a d-dimensional Brownian motion, we explicit a lower
bound for p (tn, δ, ε) in this simple case. First, P

(
Wt ∈ Bktn

)
=
´
Bktn

fWt (x) dx where fWt is the density

ofWt. As ∀k, Bktn ⊂ D
ε
tn , where in this example Dεt = [−C (t, ε) , C (t, ε)]d with C (t, ε) =

√
t ln
(

8t
πε

2
d

)
, it

holds that ∀x ∈ Dεt , fWt
(x) ≥

(
fW 1

t
(C (t, ε))

)d
= ε

(4t)d . Hence P
(
Wt ∈ Bkt

)
≥ ε

(4t)dVol
(
Bkt
)
≥ ε

(4t)d δ
d.

As a conclusion, p (tn, δ, ε) ≥ ε
(4tn)d δ

d . Remark however that this lower bound is very crude, and that it
can be very far below p (tn, δ, ε) for large δ.

Combining all these results, we obtain a rate of convergence of v̂Π towards v:
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Theorem 3.1. ∀p ≥ 1 , ∃Cp > 0 such that:∥∥∥∥max
i∈Iq
|v (t0, x0, i)− v̂Π (t0, x0, i)|

∥∥∥∥
Lp

≤ Cp

{
(1 + |x0|) e−ρ̄T + (1 + |x0|)

3
2
√
h+ ε+ δ

h
+ 1 + C (T, ε) +

√
h

h
√
Mp (T, δ, ε)1− 1

p∨2
+ 1 + C (T, ε) +

√
h

hMp (T, δ, ε)

}
In particular, v̂Π (0, x0, i) →Lp v (0, x0, i) uniformly in i ∈ Iq when T → ∞, h → 0, ε → 0, δ → 0 and
M →∞ with δ

h → 0, C(T,ε)

h
√
Mp(T,δ,ε)1− 1

p∨2
→ 0 and C(T,ε)

hMp(T,δ,ε) → 0.

Remark 3.1. If the cost function k (recall Assumption 3) were to depend on x, then, under a usual
Lipschitz condition on k (similar to that of f), Theorem 3.1 would still hold, replacing only the term
(1 + |x0|)

3
2
√
h by

(
1 + |x0|

5
2
)√

h log
( 2T
h

)
(recalling Remark 3.4).

Remark 3.2. The adaptative local basis can be such that each hypercube contains approximately the
same number of Monte Carlo trajectories (see [13]). This means that 1

p(T,δ,ε) ∼ b where b is the number
of functions in the regression basis. With this remark in mind, the leading error term in Theorem 3.1
behaves like

√
b

h
√
M

for p = 2. This is close to the corresponding statistical error term in [42] (
√

b log(M)
hM )

in the context of BSDEs. The advantage of their approach is that they can handle any regression basis,
while our approach (in the context of optimal switching) provides a bound on the Lp error for every
p ≥ 1.

Example 3.3. In the case of a d-dimensional Brownian motion, the rate of convergence of Theorem 3.1
can be explicited further, using the upper bound on C (T, ε) from Example 3.1 and the lower bound on
p (T, δ, ε) from Example 3.2. Moreover, one can express the rate of convergence as a function of only
one parameter, choosing the five numerical parameters T , h, ε, δ and M accordingly. For instance,
assuming δ = δ, and minimizing over δ, h, ε and T , one can get a convergence rate upper bounded by
Cp (1 + |x|)

3
2 z by choosing M ∼ z−

1
2 [6(d+1)]2 . This is admittedly highly demanding in terms of sample

size M , but remember that this expression suffers from the crude lower bound on p (T, δ, ε) we chose
previously.

3.2 Convergence analysis

From now on, we suppose that all the assumptions from Subsection 2.2 are in force.

3.2.1 Finite time horizon

Lemma 3.1. There exists C > 0 such that ∀ (t, x, i) ∈ R+ × Rd × Rd′ :

0 ≤ v (t, x, i)− vT (t, x, i) ≤ C (1 + |x|) e−ρ̄t∨T−ρ1t .

Proof. First, we introduce the following notations:

H (t, T, x, α) :=
ˆ T

t

f
(
s,Xt,x

s , Iαs
)
ds−

∑
t<τn≤T

k (τn, ζn) (3.18)

J (t, T, x, α) := E [H (t, T, x, α)] (3.19)

for any admissible strategy α ∈ At,i. In particular:

v (t, x, i) = sup
α∈At,i

J (t,+∞, x, α) , vT (t, x, i) = sup
α∈AT

t,i

J (t,+∞, x, α) . (3.20)

Fix (t, x, i) ∈ R+ × Rd × Rd′ . Using equation (3.20):

vT (t, x, i) = sup
α∈AT

t,i

J (t,∞, x, α) ≤ sup
α∈At,i

J (t,∞, x, α) = v (t, x, i)
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which provides the first inequality. Consider now the second inequality. Choose ε > 0. From the definition
of v (equation (3.1)) there exists a strategy αε ∈ At,i such that:

v (t, x, i)− ε ≤ J (t,∞, x, αε) ≤ v (t, x, i)

Define the truncated strategy αεT ∈ ATt,i such that ∀s ∈ [t, T ], Iα
ε
T

s = Iα
ε

s and ∀s > T , Iα
ε
T

s = Iα
ε

T . In
order not to mix up the variables τn and ζn from different strategies, we add the name of the strategy in
index when needed. Then:

H (t,∞, x, αε)−H (t,∞, x, αεT )

=


ˆ ∞
t

f
(
s,Xt,x

s , Iα
ε

s

)
ds−

∑
ταεn ≥t

k
(
τα

ε

n , ζα
ε

n

)
−


ˆ ∞
t

f
(
s,Xt,x

s , I
αεT
s

)
ds−

∑
τ
αε
T

n ≥t

k
(
τ
αεT
n , ζ

αεT
n

)
=


ˆ ∞
t

f
(
s,Xt,x

s , Iα
ε

s

)
ds−

∑
ταεn ≥t

k
(
τα

ε

n , ζα
ε

n

)
−


ˆ t∨T

t

f
(
s,Xt,x

s , Iα
ε

s

)
ds+

ˆ ∞
t∨T

f
(
s,Xt,x

s , Iα
ε

t∨T

)
ds−

∑
t∨T≥ταεn ≥t

k
(
τα

ε

n , ζα
ε

n

)
=
ˆ ∞
t∨T

f
(
s,Xt,x

s , Iα
ε

s

)
ds−

ˆ ∞
t∨T

f
(
s,Xt,x

s , Iα
ε

t∨T

)
ds−

∑
ταεn ≥t∨T

k
(
τα

ε

n , ζα
ε

n

)
≤
ˆ ∞
t∨T

f
(
s,Xt,x

s , Iα
ε

s

)
ds−

ˆ ∞
t∨T

f
(
s,Xt,x

s , Iα
ε

t∨T

)
ds

as k (s, 0) = 0 and k ≥ 0 (Assumption 4). Hence, using Jensen’s inequality and equation (2.4), ∃C > 0
such that

|J (t,∞, x, αε)− J (t,∞, x, αεT )| ≤ E [|H (t,∞, x, αε)−H (t,∞, x, αεT )|]

≤ E
[ˆ ∞

t∨T

∣∣∣f (s,Xt,x
s , Iα

ε

s

)∣∣∣ ds]+ E
[ˆ ∞

t∨T

∣∣∣f (s,Xt,x
s , Iα

ε

t∨T

)∣∣∣ ds]
≤ C (1 + |x|) e−ρ̄t∨T−ρ1t

Finally, given that v (t, x, i) ≤ ε+ J (t,∞, x, αε) and vT (t, x, i) ≥ J (t,∞, x, αεT ) , the following holds:

v (t, x, i)− vT (t, x, i) ≤ ε+ J (t,∞, x, αε)− J (t,∞, x, αεT )
≤ ε+ C (1 + |x|) e−ρ̄t∨T−ρ1t .

Since this is true for any ε > 0, and that C, ρ and ρ1 do not depend on ε, the proposition is proved.

Now, we focus on the final boundary gf . For the time being, denote the value function (3.2) as vgfT to
emphasize the dependence of v on the terminal condition. As a consequence of equation (2.4), ∀ (x, i) ∈
Rd × Iq:

|gf (T, x, i)| ≤ C (1 + |x|) e−ρT (3.21)
Hence, define the class Θgf of Lipschitz functions from R+ × Rd × Iq into R such that ∀g ∈ Θgf ,
∀ (T, x, x′, i) ∈ R+ × Rd × Rd × Iq:

|g(T, x, i)− g(T, x′, i)| ≤ Cge
−ρT |x− x′| (3.22)

|g(T, x, i)| ≤ Cge
−ρT (1 + |x|) (3.23)

for some Cg > 0. Obviously gf ∈ Θgf . Now, for any g ∈ Θgf , denote as vgT the value function defined as
in equation (3.2) with g instead of gf . We are going to show that the precise approximation error due to
the choice of final value g does not matter much as long as g is chosen in this class Θgf .
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Lemma 3.2. There exists C > 0 such that ∀ (t, x, i) ∈ R+ × Rd × Iq:∣∣vgfT (t, x, i)− vgT (t, x, i)
∣∣ ≤ C (1 + |x|) e−ρ̄t∨T−ρ1t

Proof. Fix (t, x, i) ∈ R+×Rd×Iq. To shorten the proof, we assume that vgfT (resp. vgT ) admits an optimal
strategy α∗f ∈ ATt,i (resp. α∗ ∈ ATt,i) (this assumption can then be relaxed using ε-optimal strategies as
in the proof of Proposition 3.1)1. Therefore, recalling the notations H (equation (3.18)) and J (equation
(3.19)) introduced in the proof of Lemma 3.1:

v
gf
T (t, x, i)− vgT (t, x, i) = J

(
t, T, x, α∗f

)
+ E

[
gf

(
T,Xt,x

T , I
α∗f
T

)]
− J (t, T, x, α∗)− E

[
g
(
T,Xt,x

T , Iα
∗

T

)]
= J

(
t, T, x, α∗f

)
+ E

[
g
(
T,Xt,x

T , I
α∗f
T

)]
− J (t, T, x, α∗)− E

[
g
(
T,Xt,x

T , Iα
∗

T

)]
+E

[
gf

(
T,Xt,x

T , I
α∗f
T

)
− g

(
T,Xt,x

T , Iα
∗

T

)]
≤ E

[
gf

(
T,Xt,x

T , I
α∗f
T

)
− g

(
T,Xt,x

T , Iα
∗

T

)]
≤ C

(
1 + E

[∣∣Xt,x
T

∣∣]) e−ρT ≤ C (1 + |x|) e−ρ̄t∨T−ρ1t

Symmetrically, the same inequality holds for vgT (t, x, i)− vgfT (t, x, i), ending the proof.

Proposition 3.1. There exists C > 0 independent of T such that ∀ (t, x, i) ∈ R+×Rd× Iq and ∀g ∈ Θgf :

|v (t, x, i)− vgT (t, x, i)| ≤ C (1 + |x|) e−ρ̄t∨T−ρ1t

Proof. Combine Lemmas 3.1 and 3.2.

From now on, we choose and keep one final value function g ∈ Θgf , and remove the index g from the
notation of v and its subsequent approximations.

3.2.2 Time Discretization

Proposition 3.2. There exists a positive constant C such that for any (t, x, i) ∈ Π× Rd × Iq :

|vT (t, x, i)− vΠ (t, x, i)| ≤ Ce−ρt
(

1 + |x|
3
2
)
h

1
2 (3.24)

Proof. Under the assumptions from Subsection 2.2, one can apply Theorem 3.1 in [29] to prove (3.24),
noticing that the cost function k does not depend on the state variable x.

Use the discounting factor in the definition of f to factor the e−ρt term and to get that C does not depend
on T .

Remark 3.3. Another alternative to get this rate of h 1
2 is to work with the reflected BSDE representation

of vΠ, as in [16] (adapting [12]) or [21].
Remark 3.4. Were the cost function k to depend on the state variable, the upper bound in Proposition
3.2 would only be Ce−ρt

(
1 + |x|

5
2
) (
h log

( 2T
h

)) 1
2 , as stated in [29] (making use of results from [27]).

Proposition 3.3. There exists C > 0 such that for any (t, x, i) ∈ Π× Rd × Iq :

|vΠ (t, x, i)− v̄Π (t, x, i)| ≤ Ce−ρth 1
2

1Note that under the assumptions from Subsection 2.2, one may use Theorem 3.1 from [35] to get the existence of a

unique optimal strategy α∗ for the value function (3.2), satisfying E

[∣∣∣∑0≤τα∗n ≤T k
(
τα
∗

n , ζα
∗

n

)∣∣∣2] <∞

12



Proof. T and g being fixed, we can define, in the spirit of equations (3.18) and (3.19), the following
quantities:

H (t, x, α) :=
ˆ T

t

f
(
s,Xt,x

s , Iαs
)
ds−

∑
t≤τn≤T

k (τn, ιn−1, ιn) + g
(
t ∨ T,Xt,x

t∨T , I
α
t∨T
)

(3.25)

J (t, x, α) := E [H (t, x, α)] (3.26)

H̄ (t, x, α) :=
ˆ T

t

f
(
π (s) , X̄t,x

s , Iαs
)
ds−

∑
t≤τn≤T

k (τn, ιn−1, ιn) + g
(
t ∨ T, X̄t,x

t∨T , I
α
t∨T
)

(3.27)

J̄ (t, x, α) := E
[
H̄ (t, x, α)

]
(3.28)

for any admissible strategy α ∈ AΠ
t,i. For these discretized problems, the existence of optimal controls α∗

and ᾱ∗ is granted. Hence:

vΠ (t, x, i)− v̄Π (t, x, i) = J (t, x, α∗)− J̄ (t, x, ᾱ∗)
= J (t, x, α∗)− J̄ (t, x, α∗) +

{
J̄ (t, x, α∗)− J̄ (t, x, ᾱ∗)

}
≤ J (t, x, α∗)− J̄ (t, x, α∗)

=
ˆ T

t

e−ρsE
[
f̃
(
s,Xt,x

s , Iα
∗

s

)
− f̃

(
π (s) , X̄t,x

s , Iα
∗

s

)]
ds

+E
[
g
(
T,Xt,x

T , Iα
∗

T

)
− g

(
T, X̄t,x

T , Iα
∗

T

)]
≤ Cf

ˆ T

t

e−ρsE
[∣∣Xt,x

s − X̄t,x
s

∣∣] ds+ Cge
−ρTE

[∣∣Xt,x
T − X̄

t,x
T

∣∣]
≤ Ce−ρtE

[
sup
t≤s≤T

∣∣Xt,x
s − X̄t,x

s

∣∣] ≤ Ce−ρth 1
2

using the strong convergence speed of the Euler scheme on [t, T ]. Symmetrically, the same inequality
holds for v̄Π (t, x, i)− vΠ (t, x, i), ending the proof.

Finally, below are some bounds on vΠ and v̄Π, which will be useful later:

|vΠ (t, x, i)| ≤ Ce−ρt (1 + |x|) (3.29)

|v̄Π (t, x, i)| ≤ Ce−ρt
(

1 + |x|+ h
1
2

)
(3.30)

For the first inequality, proceed as for equation (2.5). For the second one, combine equation (3.29) with
Proposition 3.3.

3.2.3 Space localization

Recall from Subsection 3.1.3 the definition of the bounded domain Dεt , t ∈ [0, T ].

Proposition 3.4. ∀ε > 0, there exists C > 0 such that for any (x, i) ∈ Rd × Iq :

|v̄Π (0, x, i)− v̄εΠ (0, x, i)| ≤ Cε

Proof. Recall the definitions of H̄ (t, x, α) (equation (3.27)) and J̄ (t, x, α) (equation (3.28)), and define
the quantities H̄ε (t, x, α) and J̄ε (t, x, α) like H̄ (t, x, α) and J̄ (t, x, α) but with X̄ replaced by X̄ε. Then,
for every (t, x, i) ∈ Π× Rd × Iq and α ∈ AΠ

t,i:

J̄ (t, x, α) = J̄ε (t, x, α) +
ˆ T

t

E
[
f
(
π (s) , X̄t,x

s , Iαs
)
− f

(
π (s) , X̄ε,t,x

s , Iαs
)]
ds

+E
[
g
(
T, X̄t,x

T , IαT
)
− g

(
T, X̄ε,t,x

T , IαT
)]
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But: ∣∣∣∣∣
ˆ T

t

E
[
f
(
π (s) , X̄t,x

s , Iαs
)
− f

(
π (s) , X̄ε,t,x

s , Iαs
)]
ds+ E

[
g
(
T, X̄t,x

T , IαT
)
− g

(
T, X̄ε,t,x

T , IαT
)]∣∣∣∣∣

≤ Cf
ˆ T

t

e−ρsE
[∣∣X̄t,x

s − X̄ε,t,x
s

∣∣] ds+ Cge
−ρTE

[∣∣X̄t,x
T − X̄

ε,t,x
T

∣∣]
It follows that:

|v̄Π (t, x, i)− v̄εΠ (t, x, i)| ≤ Cf
ˆ T

t

e−ρsE
[∣∣X̄t,x

s − X̄ε,t,x
s

∣∣] ds+ Cge
−ρTE

[∣∣X̄t,x
T − X̄

ε,t,x
T

∣∣]
In particular, at t = 0, using equation (3.7), ∃C > 0 such that:

|v̄Π (0, x, i)− v̄εΠ (0, x, i)| ≤ Cε

3.2.4 Conditional expectation approximation

From now on the domains Dεt , t ∈ [0, T ] are fixed once and for all, and, with a slight abuse of notation,
we will drop ε from the subsequent notations.

We start with preliminary remarks. Recalling Subsection 3.1.4, with this choice of basis, λ̃tni (ϕ) (equation
(3.10)) and λ̂tni (ϕ) (equation (3.14)) become:

λ̃tni (ϕ) =
E
[
ϕ
(
tn+1, X̄tn+1 , i

)
1
{
X̄tn ∈ Bktn

}]
P
(
X̄tn ∈ Bktn

) = E
[
ϕ
(
tn+1, X̄tn+1 , i

)∣∣ X̄tn ∈ Bktn
]
, 1 ≤ k ≤ Kε

λ̂tni (ϕ) =
1
M

∑M
m=1 ϕ

(
tn+1, X̄

m
tn+1

, i
)

1
{
X̄m
tn ∈ B

k
tn

}
1
M

∑M
m=1 1

{
X̄m
tn ∈ B

k
tn

} , 1 ≤ k ≤ Kε

Extending these equations, define

λ̃tn,xi (ϕ) :=
E
[
ϕ
(
tn+1, X̄tn+1 , i

)
1
{
X̄tn ∈ Btn (x)

}]
P
(
X̄tn ∈ Btn (x)

) = E
[
ϕ
(
tn+1, X̄tn+1 , i

)∣∣ X̄tn ∈ Btn (x)
]
(3.31)

λ̂tn,xi (ϕ) :=
1
M

∑M
m=1 ϕ

(
tn+1, X̄

m
tn+1

, i
)

1
{
X̄m
tn ∈ Btn (x)

}
1
M

∑M
m=1 1

{
X̄m
tn ∈ Btn (x)

} = 1
Mx
tn

∑
m∈Mx

tn

ϕ
(
tn+1, X̄

m
tn+1

, i
)
(3.32)

for every (tn, x, i) ∈ Π×̃DεΠ × Iq, where ∀x ∈ Dεtn , Btn (x) is the unique hypercube in the partition which
contains x at time tn,Mx

tn :=
{
m ∈ [1,M ] , X̄m

tn ∈ Btn (x)
}
and Mx

tn := #Mx
tn .

Finally, recalling the approximated conditional expectations (3.12) and (3.15),

define for any (tn, x, j) ∈ Π×̃DεΠ × Iq and any measurable function ϕ : Π × Rd × Iq → R, the following
quantities:

Φtn,xj (ϕ) := E
[
ϕ
(
tn+1, X̄

tn,x
tn+1

, j
)]

(3.33)

Φ̃tn,xj (ϕ) := Ẽ
[
ϕ
(
tn+1, X̄

tn,x
tn+1

, j
)]

= Γtn,x (ϕ) ∨ λ̃tn,xj (ϕ) ∧ Γtn,x (ϕ) (3.34)

Φ̂tn,xj (ϕ) := Ê
[
ϕ
(
tn+1, X̄

tn,x
tn+1

, j
)]

= Γtn,x (ϕ) ∨ λ̂tn,xj (ϕ) ∧ Γtn,x (ϕ) (3.35)

where (recalling equation 3.11) Γtn,x (ϕ) and Γtn,x (ϕ) are lower and upper bounds on Φtn,xj (ϕ):

Γtn,x (ϕ) ≤ Φtn,xj (ϕ) ≤ Γtn,x (ϕ)
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Remark 3.5. These definitions are useful to express the dynamic programming equations (3.9), (3.13)
and (3.16). Indeed, these equations become:

v̄Π (T, x, i) = g (T, x, i)
v̄Π (tn, x, i) = max

j∈Iq

{
hf (tn, x, j)− k (tn, i, j) + Φtn,xj (v̄Π)

}
, n = N − 1, . . . , 0

ṽΠ (T, x, i) = g (T, x, i)
ṽΠ (tn, x, i) = max

j∈Iq

{
hf (tn, x, j)− k (tn, i, j) + Φ̃tn,xj (ṽΠ)

}
, n = N − 1, . . . , 0

v̂Π (T, x, i) = g (T, x, i)

v̂Π (tn, x, i) = max
j∈Iq

{
hf (tn, x, j)− k (tn, i, j) + Φ̂tn,xj (v̂Π)

}
, n = N − 1, . . . , 0

Remark 3.6. For ϕ = v̄Π, we can easily explicit bounding functions Γtn,x (v̄Π) and Γtn,x (v̄Π) of Φtn,xj (v̄Π).
Indeed, combining equation (3.30) with the above dynamic programming equation, ∃C > 0 such that
∀ (tn, x, j) ∈ Π×̃DεΠ × Iq : ∣∣Φtn,xj (v̄Π)

∣∣ ≤ Γtn,x (v̄Π) := Ce−ρtn
(

1 + |x|+
√
h
)

(3.36)

Then, we use the same bound for the definition of v̂Π, i.e. Γtn,x (v̂Π) := Γtn,x (v̄Π).
Finally, remark that ∀x ∈ DεΠ:

Γtn,x (v̄Π) ≤ Γtn (v̄Π) := Ce−ρtn
(

1 + C (T, ε) +
√
h
)

(3.37)

Now we can start the assessment of the regression error.

Lemma 3.3. Consider a measurable function ϕ : Π× Rd × Iq → R. Suppose that, for a fixed tn+1 ∈ Π,
it is Lipschitz with constant Cn+1, uniformly in j: ∀ (x1, x2, j) ∈ Rd × Rd × Iq

|ϕ (tn+1, x1, j)− ϕ (tn+1, x2, j)| ≤ Cn+1 |x1 − x2| (3.38)

Then Φtn,xj (ϕ) is Lipschitz with constant Cn+1 (1 + Lh), uniformly in j, where L := Cb + C2
σ

2 > 0.

Proof. Choose (tn, j, x1, x2) ∈ Π× Iq × Rd × Rd. Then:∣∣Φtn,x1
j (ϕ)− Φtn,x2

j (ϕ)
∣∣ =

∣∣∣E [ϕ(tn+1, X̄
tn,x1
tn+1

, j
)
− ϕ

(
tn+1, X̄

tn,x2
tn+1

, j
)]∣∣∣

≤
∥∥∥ϕ(tn+1, X̄

tn,x1
tn+1

, j
)
− ϕ

(
tn+1, X̄

tn,x2
tn+1

, j
)∥∥∥

1

≤
∥∥∥ϕ(tn+1, X̄

tn,x1
tn+1

, j
)
− ϕ

(
tn+1, X̄

tn,x2
tn+1

, j
)∥∥∥

2

Now, using equations (3.38) and (3.5), and G denoting a d-dimensional standard Gaussian random
variable, we have

E
[(
ϕ
(
tn+1, X̄

tn,x1
tn+1

, j
)
− ϕ

(
tn+1, X̄

tn,x2
tn+1

, j
))2

]
≤ C2

n+1E
[(
X̄tn,x1
tn+1

− X̄tn,x2
tn+1

)2
]

≤ C2
n+1E

[(
x1 − x2 + h (b (tn, x1)− b (tn, x2)) +

√
h (σ (tn, x1)− σ (tn, x2))G

)2
]

= C2
n+1

{
(x1 − x2 + h (b (tn, x1)− b (tn, x2)))2 + hE

[
((σ (tn, x1)− σ (tn, x2))G)2

]}
≤ C2

n+1 (x1 − x2)2 {1 +
(
2Cb + C2

σ

)
h+ C2

bh
2}

≤ C2
n+1 (x1 − x2)2

(
Cb + C2

σ

2

)2( 1
Cb + C2

σ

2

+ h

)2

.
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Thus: ∣∣Φtn,x1
j (ϕ)− Φtn,x2

j (ϕ)
∣∣ ≤ Cn+1

(
1 +

(
Cb + C2

σ

2

)
h

)
|x1 − x2|

Lemma 3.4. Consider again a function ϕ : Π×Rd× Iq → R such that (3.38) holds for a given tn+1 ∈ Π.
Then, ∀ (x, j) ∈ Dεtn × Iq: ∣∣λ̃tn,xj (ϕ)− Φtn,xj (ϕ)

∣∣ ≤ Cn+1δ (1 + Lh) .
In particular: ∣∣Φ̃tn,xj (ϕ)− Φtn,xj (ϕ)

∣∣ ≤ Cn+1δ (1 + Lh) (3.39)

Proof. Recalling the definitions of Btn (x), of λ̃tn,xj (ϕ) (equation (3.31)) and of Φtn,xj (ϕ) (equation (3.33)),
simply remark that:

min
x̃∈Btn (x)

Φtn,x̃j (ϕ) ≤ Φtn,xj (ϕ) ≤ max
x̃∈Btn (x)

Φtn,x̃j (ϕ)

min
x̃∈Btn (x)

Φtn,x̃j (ϕ) ≤ λ̃tn,xj (ϕ) ≤ max
x̃∈Btn (x)

Φtn,x̃j (ϕ) .

Now, using Lemma 3.3:∣∣λ̃tn,xj (ϕ)− Φtn,xj (ϕ)
∣∣ ≤ max

x̃∈Btn (x)
Φtn,x̃j (ϕ)− min

x̃∈Btn (x)
Φtn,x̃j (ϕ)

≤ Cn+1 (1 + Lh) max
(x1,x2)∈Btn (x)2

|x1 − x2|

≤ Cn+1 (1 + Lh) δ

Lemma 3.5. ∀ (tn, x1, x2, i) ∈ Π×
(
Rd
)2 × Iq:

|v̄Π (tn, x1, i)− v̄Π (tn, x2, i)| ≤ Cn |x1 − x2| (3.40)

where:

CN = e−ρtNCg

Cn = hCfe
−ρtn + Cn+1 (1 + Lh) , n = N − 1, . . . , 0 (3.41)

In particular, ∃C > 0 such that ∀n = 0, 1, . . . , N :

Cn ≤ Ce−ρtneL(T−tn) (3.42)

Proof. Recall Remark 3.5. We prove the lemma by induction. First, remark that, using hypothesis (3.22),
it holds for n = N . Now, suppose that it holds for some (n+ 1) ∈ [1, . . . , N ]. Then, using Lemma 3.3:

v̄Π (tn, x1, i)
= max

j∈Iq

{
hf(tn, x1, j)− k(tn, i, j) + Φtn,x1

j (v̄Π)
}

= max
j∈Iq

{
hf(tn, x2, j)− k(tn, i, j) + Φtn,x2

j (v̄Π) + h(f(tn, x1, j)−f(tn, x2, j))+
(
Φtn,x1
j (v̄Π)− Φtn,x2

j (v̄Π)
)}

≤ max
j∈Iq

{
hf(tn, x2, j)− k(tn, i, j) + Φtn,x2

j (v̄Π) + he−ρtnCf |x1 − x2|+ Cn+1 (1 + Lh) |x1 − x2|
}

= v̄Π (tn, x2, i) +
(
he−ρtnCf + Cn+1 (1 + Lh)

)
|x1 − x2|

Symmetrically, the same inequality holds for v̄Π (tn, x2, i) − v̄Π (tn, x1, i), yielding equations (3.40) and
(3.41). Finally, use the discrete version of Gronwall’s inequality to obtain equation (3.42)

Proposition 3.5. ∃C > 0 s.t. ∀ (t, x, i) ∈ Π× Rd × Iq :

|v̄Π (t, x, i)− ṽΠ (t, x, i)| ≤ C δ
h
e−ρt .
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Proof. For each tn ∈ Π, we look for an upper bound En, independent of x and i, of the quantity
|v̄Π (tn, x, i)− ṽΠ (tn, x, i)|. First:

|v̄Π (T, x, i)− ṽΠ (T, x, i)| = |g (T, x, i)− g (T, x, i)| = 0

Hence EN = 0. Fix now n ∈ [0, N − 1]. Using Remark 3.5:

ṽΠ (tn, x, i) = max
j∈Iq

{
hf (tn, x, j)− k (tn, i, j) + Φ̃tn,xj (ṽΠ)

}
= max

j∈Iq

{
hf (tn, x, j)− k (tn, i, j) + Φtn,xj (v̄Π)

+Φ̃tn,xj (v̄Π)− Φtn,xj (v̄Π)
+Φ̃tn,xj (ṽΠ)− Φ̃tn,xj (v̄Π)

}
Using Lemmas 3.4 and 3.5, Φ̃tn,xj (v̄Π)−Φtn,xj (v̄Π) ≤ Cn+1δ (1 + Lh) where Cn+1 is the Lipschitz constant
of v̄Π at time tn+1 (see Lemma 3.5). Moreover,

Φ̃tn,xj (ṽΠ)− Φ̃tn,xj (v̄Π) ≤ E
[
ṽΠ
(
tn+1, X̄tn+1 , j

)
− v̄Π

(
tn+1, X̄tn+1 , j

)∣∣Xtn ∈ Btn (x)
]

≤ En+1 .

Hence:
ṽΠ (tn, x, i) ≤ v̄Π (tn, x, i) + Cn+1δ (1 + Lh) + En+1

Symmetrically, the same inequality holds for v̄Π (T, x, i)− ṽΠ (tn, x, i), leading to:

|v̄Π (tn, x, i)− ṽΠ (tn, x, i)| ≤ En

where:
EN = 0
En = Cn+1δ (1 + Lh) + En+1 .

Consequently, using equation (3.42):

En = δ (1 + Lh)
N∑

k=n+1
Ck ≤ C

δ

h
e−ρtn

where C > 0 does not depend on tn nor T .

The following lemma measures the regression error. It is an extension of Lemma 3.8 in [55] (itself inspired
by Theorem 5.1 in [12]).

Lemma 3.6. Consider a measurable function ϕ : Π× Rd × Iq → R. For any p ≥ 1, there exists Cp ≥ 0
such that ∀ (tn, l, j) ∈ Π× [1,M ]× Iq:∥∥∥∥Φ̂tn,X̄

l
tn

j (ϕ)− Φ̃tn,X̄
l
tn

j (ϕ)
∥∥∥∥
Lp

≤ Cp√
M

Γtn (ϕ) + ϕ̄tn

P
(
X̄tn ∈ Btn

(
X̄ l
tn

))1− 1
p∨2

+ Cp
M

ϕ̄tn

P
(
X̄tn ∈ Btn

(
X̄ l
tn

)) (3.43)

where ϕ̄tn ∈ R+ is such that
∣∣ϕ (tn+1, X̄tn+1 , j

)∣∣ ≤ ϕ̄tn a.s. .

Proof. Define the following centered random variables:

ε
tn,X̄

l
tn

j (ϕ) := 1
M

M∑
m=1

ϕ
(
tn+1, X̄

m
tn+1

, j
)

1
{
X̄m
tn ∈ Btn

(
X̄ l
tn

)}
− E

[
ϕ
(
tn+1, X̄

m
tn+1

, j
)

1
{
X̄m
tn ∈ Btn

(
X̄ l
tn

)}]
εtn,X̄

l
tn (1) := 1

M

M∑
m=1

1
{
X̄m
tn ∈ Btn

(
X̄ l
tn

)}
− P

(
X̄m
tn ∈ Btn

(
X̄ l
tn

))
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Then: ∣∣∣∣Φ̂tn,X̄ltnj (ϕ)− Φ̃tn,X̄
l
tn

j (ϕ)
∣∣∣∣ =

∣∣∣∣Φ̂tn,X̄ltnj (ϕ)− Φ̃tn,X̄
l
tn

j (ϕ)
∣∣∣∣ ∧ 2Γtn (ϕ)

≤
∣∣∣∣Φ̂tn,X̄ltnj (ϕ)− Φ̃tn,X̄

l
tn

j (ϕ)
∣∣∣∣1


∣∣∣εtn,X̄ltn (1)
∣∣∣

P
(
X̄tn ∈ Btn

(
X̄ l
tn

)) ≤ 1
2

+ 2Γtn (ϕ) 1


∣∣∣εtn,X̄ltn (1)

∣∣∣
P
(
X̄tn ∈ Btn

(
X̄ l
tn

))> 1
2


and: ∣∣∣∣Φ̂tn,X̄ltnj (ϕ)− Φ̃tn,X̄

l
tn

j (ϕ)
∣∣∣∣1


∣∣∣εtn,X̄ltn (1)
∣∣∣

P
(
X̄tn ∈ Btn

(
X̄ l
tn

)) ≤ 1
2


=

∣∣∣∣∣Φ̂tn,X̄ltnj (ϕ)− Φ̃tn,X̄
l
tn

j (ϕ)
P
(
X̄tn ∈ Btn

(
X̄ l
tn

))
1
M

∑M
m=1 1

{
X̄m
tn ∈ Btn

(
X̄ l
tn

)}−
Φ̃tn,X̄

l
tn

j (ϕ) εtn,X̄
l
tn (1)

1
M

∑M
m=1 1

{
X̄m
tn ∈ Btn

(
X̄ l
tn

)}∣∣∣∣∣1


∣∣∣εtn,X̄ltn (1)
∣∣∣

P
(
X̄tn ∈ Btn

(
X̄ l
tn

)) ≤ 1
2


≤


∣∣∣∣εtn,X̄ltnj (ϕ)

∣∣∣∣
1
M

∑M
m=1 1

{
X̄m
tn ∈ Btn

(
X̄ l
tn

)} ∧ 3Γtn (ϕ) +

∣∣∣∣Φ̃tn,X̄ltnj (ϕ)
∣∣∣∣

∣∣∣εtn,X̄ltn (1)
∣∣∣

1
M

∑M
m=1 1

{
X̄m
tn ∈ Btn

(
X̄ l
tn

)}
1


∣∣∣εtn,X̄ltn (1)

∣∣∣
P
(
X̄tn ∈ Btn

(
X̄ l
tn

)) ≤ 1
2


≤ 2

P
(
X̄tn ∈ Btn

(
X̄ l
tn

)) {∣∣∣∣εtn,X̄ltnj (ϕ)
∣∣∣∣ ∧ 5Γtn (ϕ) +

∣∣∣εtn,X̄ltn (1)
∣∣∣Γtn (ϕ)

}
1


∣∣∣εtn,X̄ltn (1)

∣∣∣
P
(
X̄tn ∈ Btn

(
X̄ l
tn

)) ≤ 1
2


Now, for any p ≥ 1:∣∣∣∣Φ̂tn,X̄ltnj (ϕ)− Φ̃tn,X̄

l
tn

j (ϕ)
∣∣∣∣p

≤ 23p−2

P
(
X̄tn ∈ Btn

(
X̄ l
tn

))p {{∣∣∣∣εtn,X̄ltnj (ϕ)
∣∣∣∣ ∧ 5Γtn (ϕ)

}p
+
{∣∣∣εtn,X̄ltn (1)

∣∣∣Γtn (ϕ)
}p}

×

1


∣∣∣εtn,X̄ltn (1)

∣∣∣
P
(
X̄tn ∈ Btn

(
X̄ l
tn

)) ≤ 1
2

+ 22p−1 (Γtn (ϕ)
)p 1


∣∣∣εtn,X̄ltn (1)

∣∣∣
P
(
X̄tn ∈ Btn

(
X̄ l
tn

)) > 1
2


and:

E
[∣∣∣∣Φ̂tn,X̄ltnj (ϕ)− Φ̃tn,X̄

l
tn

j (ϕ)
∣∣∣∣p]

≤ 23p−2

P
(
X̄tn ∈ Btn

(
X̄ l
tn

))p {E [{∣∣∣∣εtn,X̄ltnj (ϕ)
∣∣∣∣ ∧ 5Γtn (ϕ)

}p]
+
(
Γtn (ϕ)

)p E [∣∣∣εtn,X̄ltn (1)
∣∣∣p]}

+22p−1 (Γtn (ϕ)
)p P(∣∣∣εtn,X̄ltn (1)

∣∣∣p > P
(
X̄tn ∈ Btn

(
X̄ l
tn

))p
2p

)

≤ 8p

P
(
X̄tn ∈ Btn

(
X̄ l
tn

))p {E [{∣∣∣∣εtn,X̄ltnj (ϕ)
∣∣∣∣ ∧ 5Γtn (ϕ)

}p]
+
{

Γtn (ϕ)
}p E [∣∣∣∣εtn,X̄ltnj (1)

∣∣∣∣p]}(3.44)
using Markov’s inequality. Now, the following lemma will provide upper bounds for E

[∣∣∣εtn,X̄ltn (1)
∣∣∣p] and

E
[∣∣∣∣εtn,X̄ltnj (ϕ)

∣∣∣∣p].
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Lemma 3.7. For every p ≥ 1, there exists Cp > 0 such that for any i.i.d. sample X1, . . . , XM of R-valued
random variables such that E [X1] = 0 and E

[
|X1|p∨2

]
<∞, the following holds:∥∥∥∥∥ 1

M

M∑
m=1

Xm

∥∥∥∥∥
Lp

≤ Cp√
M
‖X1‖Lp∨2

(3.45)

Proof. Using Marcinkiewicz-Zygmund’s inequality, there exists Cp > 0 such that:

E

[∣∣∣∣∣
M∑
m=1

Xm

∣∣∣∣∣
p]
≤ CpE

( M∑
m=1
|Xm|2

) p
2


Multiplying both sides by 1
Mp :

E

[∣∣∣∣∣ 1
M

M∑
m=1

Xm

∣∣∣∣∣
p]
≤ Cp

M
p
2
E

( 1
M

M∑
m=1
|Xm|2

) p
2
 (3.46)

If p ≥ 2, then p
2 ≥ 1 and, using Jensen’s inequality:(

1
M

M∑
m=1
|Xm|2

) p
2

≤ 1
M

M∑
m=1

(
|Xm|2

) p
2 = 1

M

M∑
m=1
|Xm|p

Taking expectations on both sides:

E

( 1
M

M∑
m=1
|Xm|2

) p
2
 ≤ E [|X1|p] (3.47)

Now, if p < 2, then p
2 < 1 and, using Jensen’s inequality:

E

( 1
M

M∑
m=1
|Xm|2

) p
2
 ≤ E

[(
1
M

M∑
m=1
|Xm|2

)] p
2

= E
[
|X1|2

] p
2 (3.48)

Then combine inequalities (3.46), (3.47) and (3.48) and take the power 1
p to obtain inequality (3.45).

Now, suppose that ∃ϕ̄tn ∈ R+ s.t.
∣∣ϕ (tn+1, X̄tn+1 , j

)∣∣ ≤ ϕ̄tn a.s. . Then, using Lemma 3.7, ∃Cp > 0
such that:

E
[∣∣∣εtn,X̄ltn (1)

∣∣∣p] ≤ Cp

M
p
2
E
[∣∣1{X̄tn∈ Btn

(
X̄ l
tn

)}
− P

(
X̄tn∈ Btn

(
X̄ l
tn

))∣∣p∨2] p
p∨2 (3.49)

E
[∣∣∣∣εtn,X̄ltnj (ϕ)

∣∣∣∣p] ≤ Cp

{
(ϕ̄tn)p

Mp
+ 1
M

p
2
E
[∣∣ϕ(tn+1, X̄tn+1 , j

)
1
{
X̄tn∈Btn

(
X̄ l
tn

)}
−E

[
ϕ
(
tn+1, X̄tn+1 , j

)
1
{
X̄tn∈Btn

(
X̄ l
tn

)}]∣∣p∨2] p
p∨2
}

(3.50)

where, for the second inequality, the term m = l in the sum was treated separately. Then:

E
[∣∣ϕ (tn+1, X̄tn+1 , j

)
1
{
X̄tn∈ Btn

(
X̄ l
tn

)}
− E

[
ϕ
(
tn+1, X̄tn+1 , j

)
1
{
X̄tn∈ Btn

(
X̄ l
tn

)}]∣∣p∨2] p
p∨2

≤
(

2p∨2−1E
[(
ϕ̄tn
)p∨2 1

{
X̄tn∈ Btn

(
X̄ l
tn

)}
+ E

[(
ϕ̄tn
)p∨2 1

{
X̄tn∈ Btn

(
X̄ l
tn

)}]]) p
p∨2

≤ 2p
(
ϕ̄tn
)p P (X̄tn ∈ Btn

(
X̄ l
tn

)) p
p∨2 (3.51)

In a similar manner:

E
[∣∣1{X̄tn ∈ Btn

(
X̄ l
tn

)}
− P

(
X̄tn ∈ Btn

(
X̄ l
tn

))∣∣p∨2] p
p∨2 ≤ 2pP

(
X̄tn ∈ Btn

(
X̄ l
tn

)) p
p∨2 (3.52)

Finally, the combination of inequalities (3.44), (3.49), (3.50), (3.51) and (3.52) proves equation (3.43).
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We now apply Lemma 3.6 to v̄Π in the following Corollary:
Corollary 3.1. For every p ≥ 1, there exists Cp ≥ 0 s.t. ∀ (tn, l, j) ∈ Π× [1,M ]× Iq:∥∥∥∥Φ̂tn,X̄

l
tn

j (v̄Π)− Φ̃tn,X̄
l
tn

j (v̄Π)
∥∥∥∥
Lp

≤ Cpe−ρtn
1 + C (T, ε) +

√
h

√
Mp (T, δ, ε)1− 1

p∨2

(
1 + 1
√
Mp (T, δ, ε)

1
p∨2

)

Proof. Recalling the space localization procedure (cf. Paragraph 3.1.3), in particular the definition of
C (T, ε), a direct consequence of equations (3.36) and (3.30), is that for every (tn, j) ∈ Π× Iq:

Γtnj (v̄Π) = Ce−ρtn
(

1 + C (T, ε) +
√
h
)

(3.53)∣∣v̄Π
(
tn+1, X̄tn+1 , j

)∣∣ ≤ Ce−ρtn
(

1 + C (T, ε) +
√
h
)

(3.54)

Hence one can apply Lemma 3.6 to v̄Π with these upper bounds. The final step is to recall that the
minimum probability p (T, δ, ε) defined in equation (3.17) is a lower bound on P

(
X̄tn ∈ Btn

(
X̄ l
tn

))
for

any ∀ (tn, l) ∈ Π× [1,M ].

Using this result, we can now assess the error between v̄Π and v̂Π.
Proposition 3.6. ∀p ≥ 1, ∃Cp > 0 s.t. ∀ (tn, l) ∈ Π× [1,M ] :∥∥∥∥∥ sup
i∈Itnq

∣∣v̄Π
(
t, X̄ l

tn , i
)
− v̂Π

(
t, X̄ l

tn , i
)∣∣∥∥∥∥∥

Lp

≤ Cpe−ρtn
{
δ

h
+ 1 + C (T, ε) +

√
h

h
√
Mp (T, δ, ε)1− 1

p∨2

(
1 + 1
√
Mp (T, δ, ε)

1
p∨2

)}

where Itnq is the set of Ftn-measurable random variables taking values in Iq.

Proof. For each tn ∈ Π, we look for an upper bound En, independent of l, such that:∥∥∥∥∥ sup
i∈Itnq

∣∣v̄Π
(
t, X̄ l

tn , i
)
− v̂Π

(
t, X̄ l

tn , i
)∣∣∥∥∥∥∥

Lp

≤ En .

First: ∥∥∥∥∥sup
i∈ITq

∣∣v̄Π
(
T, X̄ l

T , i
)
− v̂Π

(
T, X̄ l

T , i
)∣∣∥∥∥∥∥

Lp

=
∥∥∥∥∥sup
i∈ITq

∣∣g (T, X̄ l
T , i
)
− g

(
T, X̄ l

T , i
)∣∣∥∥∥∥∥

Lp

= 0

Hence EN = 0. Fix now n ∈ [0, N − 1]. Recall the dynamic programming equations from Remark 3.5,
and, for every (i, l) ∈ Itnq × [1,M ], introduce j∗ (resp. ĵ∗) the arg max for v̄Π (resp. v̂Π) at point X̄ l

tn ,
i.e.:

v̄Π
(
tn, X̄

l
tn , i

)
= hf

(
tn, X̄

l
tn , j

∗)− k (tn, i, j∗) + Φtn,X̄
l
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j∗ (v̄Π)

v̂Π
(
tn, X̄

l
tn , i

)
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(
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l
tn , ĵ

∗
)
− k

(
tn, i, ĵ

∗
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l
tn

ĵ∗
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Now:

v̂Π
(
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l
tn , i

)
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(
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l
tn , ĵ

∗
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tn, i, ĵ
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{
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l
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∗
)
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∗
)

+ Φtn,X̄
l
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ĵ∗
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}
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ĵ∗
(v̄Π)

}
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ĵ∗
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}
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{
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l
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ĵ∗
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l
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ĵ∗
(v̄Π)

}
≤ v̄Π

(
tn, X̄

l
tn , i

)
+ Cn+1δ (1 + Lh) +

∑
j∈Iq

{
Φ̂tn,X̄

l
tn

j (v̄Π)− Φ̃tn,X̄
l
tn

j (v̄Π)
}

1
{
ĵ∗ = j

}
+
∣∣∣∣Φ̂tn,X̄ltnĵ∗

(v̂Π)− Φ̂tn,X̄
l
tn

ĵ∗
(v̄Π)

∣∣∣∣
≤ v̄Π

(
tn, X̄

l
tn , i

)
+ Cn+1δ (1 + Lh) +

∑
j∈Iq

∣∣∣∣Φ̂tn,X̄ltnj (v̄Π)− Φ̃tn,X̄
l
tn

j (v̄Π)
∣∣∣∣

+ sup
j∈Itnq

∣∣∣∣Φ̂tn,X̄ltnj (v̂Π)− Φ̂tn,X̄
l
tn

j (v̄Π)
∣∣∣∣
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Symmetrically:

v̄Π
(
tn, X̄

l
tn , i

)
≤ v̂Π

(
tn, X̄

l
tn , i

)
+ Cn+1δ (1 + Lh) +

∑
j∈Iq
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l
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l
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j (v̂Π)
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Combining these two inequalities:

sup
i∈Itnq

∣∣v̄Π
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l
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)
− v̂Π

(
tn, X̄

l
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Hence, using the triangular inequality, Corollary 3.1, equation (3.32), and the induction hypothesis:∥∥∥∥∥ sup
i∈Itnq

|v̄Π (tn, x, i)− v̂Π (tn, x, i)|
∥∥∥∥∥
Lp

≤ En := Cn+1δ (1 + Lh) + Cpe
−ρtn 1 + C (T, ε) +

√
h

√
Mp (T, δ, ε)1− 1

p∨2

+Cpe−ρtn
1 + C (T, ε) +

√
h

Mp (T, δ, ε) + En+1

for some constant Cp > 0 which depends only on p. Consequently:

En = δ (1 + Lh)
(

N∑
k=n+1

Ck

)
+ Cp

1 + C (T, ε) +
√
h

√
Mp (T, δ, ε)1− 1

p∨2

(
1 + 1
√
Mp (T, δ, ε)

1
p∨2

)(
N∑
k=n

e−ρtk

)

≤ Cpe
−ρtn

{
δ

h
+ 1 + C (T, ε) +

√
h

h
√
Mp (T, δ, ε)1− 1

p∨2

(
1 + 1
√
Mp (T, δ, ε)

1
p∨2

)}

where Cp > 0 depends only on p.

Finally, the combination of Propositions 3.1 3.2, 3.3, 3.5 and 3.6 at time t = t0 proves Theorem 3.1.

4 Complexity analysis and memory reduction

4.1 Complexity

4.1.1 Computational complexity

The number of operations required by the algorithm described below is in O
(
q2.N.M

)
, where we recall

that q is the number of possible switches, N is the number of time steps and M is the number of Monte
Carlo trajectories.

• The q2 term stems from the fact that for every i ∈ Iq, one has to compute a maximum on j ∈ Iq (see
equation (3.16)). However, this q2 can be reduced to q as soon as the two following conditions are
satisfied:

1. (Irreversibility) The controlled variable can only be increased (or, symmetrically, can only be de-
creased)

2. (Cost Separability) There exists two functions k1 and k2 such that ∀ (t, i, j) ∈ R+× Iq× Iq, k (t, i, j) =
k1 (t, i) + k2 (t, j). For instance, this is true of affine costs.
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Indeed, under those two conditions, equation (3.16) becomes:

v̂Π (tn, x, i) + k1 (tn, i) = max
j∈Iq, j≥i

{
hf (tn, x, j)− k2 (tn, j) + Ê

[
v̂Π

(
tn+1, X̄

tn,x
tn+1

, j
)]}

, n = N − 1, . . . , 0

These maxima can be computed in O(q) instead of O
(
q2) by starting from the biggest element i = iq

down to the smallest element i = i1 (in lexicographical order) and keeping track of the partial maxima.

Note that these two conditions hold for the numerical application from Section 5, providing the improved
complexity O(q.N.M).

• The N term comes from the backward time induction.

• The M term corresponds to the cost of a regression, which, in the case of a local basis, can be brought
down to O (M) (cf. [13]).

4.1.2 Memory complexity

The memory size required for solving optimal switching problems (as well as the simpler American option
problems and the more complex BSDE problems) by Monte Carlo methods is often said to be in O(N.M),
because, as the Euler scheme is a forward scheme and the dynamic programming principle is a backward
scheme, the storage of the Monte Carlo trajectories seems inescapable. This fact is the major limitation
of such methods, as acknowledged in [16] for instance.

Since such a complexity would be unbearable in high dimension, we describe below a general mem-
ory reduction method to obtain a much more amenable O(N +M) complexity (or, more precisely, of
O(m.N + q.M) with m � M). This improvement really opens the door to the use of Monte Carlo
methods for American options, optimal switching and BSDEs on high-dimensional practical applications.
Note that this tool can be combined with all the existing Monte Carlo backward methods which (seem
to) require the storage of all the trajectories.

A drawback of this tool is that it is limited to Markovian processes. However, one can usually circumvent
this restriction by increasing the dimension of the state variable.

4.2 General memory reduction method

4.2.1 Description

The memory reduction method for Monte Carlo pricing of American options was pioneered by [18] for the
geometric Brownian motion, and was subsequently extended to multi-dimensional geometric Brownian
motions ([19]) as well as exponential Lévy processes ([20]). These papers take advantage of the additivity
property of the processes considered. However, as briefly hinted in [59], the memory reduction trick can
be extended to more general processes. In particular, it can be combined with any discretization scheme,
for instance the Euler scheme or Milstein scheme, as long as the value of the stochastic process at one
time step can be expressed via its value at the subsequent time step.

From a practical point of view, the production of “random” sequences usually involves wisely chosen deter-
ministic sequences, with statistical properties as close as possible to true randomness (cf. [39] for instance
for an overview). These sequences can usually be set using a seed, i.e. a (possibly multidimensional) fixed
value aimed at initializing the algorithm which produces the sequence:

{set seed s}
rand()
→ ε1

rand()
→ ε2

rand()
→ · · ·

rand()
→ εn (4.1)

where the rand() operation consists in going to the next element of the sequence. Now two useful aspects
can be stressed. The first is that one can usually recover the current seed at any stage of the sequence.
The second is that, if the seed is set later to, say, once again the seed s from equation (4.1), then the
following elements of the sequence will be once again ε1, ε2, . . . In other words, one can recover any
previously produced subsequence of the sequence (εn)n≥1, provided one stored beforehand the seed at
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the beginning of the subsequence. This feature is at the core of the memory reduction method, which we
are going to discuss below in a general setting.
Consider a Markovian stochastic process (Xt)t≥0, for instance the solution of the stochastic differential
equation (2.2), recalled below:

X0 = x0 ∈ Rd

dXs = b (s,Xs) ds+ σ (s,Xs) dWs

The application of the Euler scheme to this equation can be denoted as follows:

xjti+1
= f

(
xjti , ε

j
i

)
(4.2)

f (x, ε) := x+ b (ti, x)h+ σ (ti, x) ε
√
h (4.3)

where ∀i ∈ [0, N − 1] and ∀j ∈ [1,M ], εji ∈ Rd is drawn from a d-dimensional Gaussian random variable.
Suppose that for any ε ∈ Rd, the function x 7→ f (x, ε) is invertible (call finv its inverse). Then, starting
from the final value xjtN of the sequence (4.2), one can recover the whole trajectory of X:

xjti = finv

(
xjti+1

, εji

)
(4.4)

as long as one can recover the previous draws εjN−1, . . ., ε
j
0. The following pseudo-code describes an easy

way to do it.

Algorithm 1 Euler Scheme Inverse Euler Scheme

1 % I n i t i a l i z a t i o n
2 f o r j from 1 to M
3 X[ j ] <− x j
4 end fo r
5
6 % LOOP 1 : E u l e r scheme
7 f o r i from 0 to N−1
8 S [ i ] <− ge t s e ed ( )
9 f o r j from 1 to M
10 E <− rand ( d )
11 X[ j ] <− f (X [ j ] , E)
12 end fo r
13 end fo r
14 S [N] <− ge t s e ed ( )

1 % LOOP 2 : I n v e r s e E u l e r scheme
2 f o r i from N−1 down to 0
3 s e t s e e d (S [ i ] )
4 f o r j from 1 to M
5 E <− rand ( d )
6 X[ j ] <− f i n v (X[ j ] , E)
7 end fo r
8 end fo r
9 s e t s e e d (S [N] )

The first column corresponds to the Euler scheme, with the addition of the storage of the seeds. At the
end of the first colum, the vector X contains the last values Xj

T , j = 1, . . . ,M . From this point, one can
recover the previous values Xj

ti , i = N − 1, . . . , 0, j = 1, . . . ,M as done in the second column.
Inside this last loop, one can perform the estimation of the conditional expectations required by the
resolution algorithm of our stochastic control problem (equation (2.10)). Compared to the standard
resolution storaging the full trajectories Xj

ti , i = 0, . . . , N , j = 1, . . . ,M , the pros and cons are the
following:

• The memory needed is brought down from O (M ×N) to O (M +N) (storage of the vector space and
the seeds)

• The number of calls to the rand () function is doubled.

In other words, at the price of doubling the computation time, one can bring down the required memory
storage by the factor min (M,N), which is a very significant saving. Moreover, the theoretical additional
computation time can be insignificant in practice, as the availability of much more physical memory
makes the resort to the slower virtual memory much less likely.
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Remark 4.1. Even though the storage of the seeds does take O (N) in memory size, the constant may be
much greater than 1. For instance, on Matlab®, a seed from the Combined Multiple Recursive algorithm
(refer for instance to [39] for a description of several random generators) is made of 12 uint32 (32-bit
unsigned integer), a seed from the Multiplicative Lagged Fibonacci algorithm is made of 130 uint64, and
a seed from the popular Mersenne Twister algorithm is made of 625 uint32.

In order to relieve the storage of the seeds, we provide below a finer memory reduction algorithm.
Although Algorithm 2 requires three main loops, it enables to perform the last loop without fiddling the
seed of the random generator, and without any vector of seeds locked in memory, which will thus be fully
dedicated to the regressions and other resolution operations. Moreover, the first two main loops can be
performed beforehand once and for all, storing only the last values of the vector X as well as the first
seed S [0]. Finally, if the random generator is able to leapfrop a given number of steps, the first loop can
be drastically reduced.

Algorithm 2 General Memory Reduction Method

1 % LOOP 1 : Seeds s t o r a g e
2 f o r i from 0 to N−1
3 S [ i ] <− ge t s e ed ( )
4 f o r j from 1 to M
5 E <− rand ( d )
6 end fo r
7 end fo r
8
9 % I n i t i a l i z a t i o n
10 f o r j from 1 to M
11 X[ j ] <− x j
12 end fo r
13 %
14 %
15 %
16 %
17 %

1 % LOOP 2 : E u l e r scheme
2 f o r i from 0 to N−1
3 s e t s e e d (S [N−i −1])
4 f o r j from 1 to M
5 E <− rand ( d )
6 X[ j ] <− f (X [ j ] , E)
7 end fo r
8 end fo r
9 s e t s e e d (S [ 0 ] ) ; f r e e (S)
10
11 % LOOP 3 : I n v e r s e E u l e r scheme
12 f o r i from N−1 down to 0
13 f o r j from 1 to M
14 E <− rand ( d )
15 X[ j ] <− f i n v (X[ j ] , E)
16 end fo r
17 end fo r

4.2.2 Numerical stability

Theoretically, the trajectories produced by the Euler scheme (4.2) and the inverse Euler scheme (4.4) are
exactly the same. In practice however, a discrepancy may appear, the cause of which is discussed below.
On a computer, not all real numbers can be reproduced. Indeed, they must be stored on a finite number
of bits, using a predefined format (usually the IEEE Standard for Floating-Point Arithmetic (IEEE 754)).
In particular, there exists an incompressible distance ε > 0 between two different numbers stored. This
causes rounding errors when performing operations on real numbers.
For instance, consider x ∈ R and an invertible function f : R 7→ R. Compute y = f (x) and then compute
x̂ = finv (y). One would expect that x̂ = x, but in practice, because of rounding effects, one may get
x̂ = x+ εz for a small ε > 0, where z is a discrete variable, which can be deemed random, taking values
around zero. This phenomenon is illustrated on Figure 4.1, which displays a histogram of x̂ − x for
n = 107 different values of x ∈ [0, 1] and for the simple linear function f (x) = 2x+ 3.
We now describe how this affects our memory reduction method. Recall equation 4.2:

xjti+1
= f

(
xjti , ε

j
i

)
Now, instead of equation (4.4), the inverse Euler scheme will provide something like:

yjtN = xjtN

yjti = finv

(
yjti+1

, εji

)
+ εzji (4.5)
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for a small ε > 0, where zji , i = 0, . . . , N , j = 1, . . . ,M , can be deemed realizations of a discrete random
variable Z, independent ofW . The distribution of Z is unknown, but data suggests it may be innocuously
assumed centered, symmetric, and with finite moments.

Figure 4.1: Histogram of rounding errors

We are now interested in studying the compound rounding error yti − xti as a function of ε. Of course,
its behaviour depends on the choice of f (equation (4.3)). Below, we explicit this error on two simple
examples: an arithmetic Brownian motion and an Ornstein-Uhlenbeck process. These two examples
illustrate how the compound rounding error can vary dramatically w.r.t. f .

First example: arithmetic Brownian motion Consider first the case of an arithmetic Brownian
motion with drift parameter µ and volatility parameter σ. Here f and its inverse are given by:

f (x, ε) = x+ µh+ σ
√
hε

finv (x, ε) = x− µh− σ
√
hε

Hence, using equation (4.5), for every j = 1, . . . ,M :

yjti − x
j
ti = ε

N−1∑
k=i

zjk

In other words, the compound rounding error behaves as a random walk, multiplied by the small pa-
rameter ε. Hence, as long as ε � h (which is always the case as real numbers smaller than ε cannot be
handled properly on a computer), this numerical error is harmless.

Remark that a similar numerical error arises from the algorithms proposed in [18] , [19] and [20], but,
fortunately, as discussed above, this error is utterly negligible.

Second example: Ornstein-Uhlenbeck process Now, consider the case of an Ornstein-Uhlenbeck
process with mean reversion α > 0, long-term mean µ and volatility σ. Here:

f (x, ε) = x+ α (µ− x)h+ σ
√
hε

finv (x, ε) = 1
1− αh

(
x− αµh− σ

√
hε
)

Using equation (4.5), for every j = 1, . . . ,M the compound error is given by:

yjti − x
j
ti = ε

N−1∑
k=i

1
(1− αh)k−i

zjk

As (1− αh)−N ∼ exp (αT ) when h→ 0, one can see that, as soon as T > − ln(ε)
α , this error may become

overwhelming. This phenomenon is illustrated on Figure 4.2a on a sample of 100 trajectories.
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In order to mitigate this effect, we propose to modify the Algorithm 2 as follows: in its second loop (usual
Euler scheme), instead of saving only the last values xjT , one may define a small subset Π̃ ⊂ Π and save
the intermediate values xjti , ti ∈ Π̃. Then, in the last loop (inverse Euler scheme), every time that ti ∈ Π̃,
the current value of the set xjti may be recovered from this previous storage.

Figure 4.2b illustrates the new behaviour of the compound rounding error with this mended algorithm,
on an example with T = 10 years and 4 intermediate saves (in addition to the final values).

The drawback of this modification, of course, is that it multiplies the required storage space by the
factor #Π̃. However, this remains much smaller than the O (M ×N) required by the naive full storage
algorithm.

(a) Without intermediate saves (b) With intermediate saves

Figure 4.2: Compound rounding error for the Ornstein-Uhlenbeck process

5 Application to investment in electricity generation

This section is devoted to an application of the resolution method studied in Section 2. We choose to
apply it to an investment problem in electricity generation on a single geographical zone. We intend to
show that it is possible to provide a probabilistic outlook of future electricity generation mixes instead of
a deterministic outlook provided by planification methods. Nevertheless, the problem presents so many
difficulties that addressing all of them in the same model is unresonable. Some aspects have thus to be
left aside. Our goal here is to show that the algorithm described in Section 3 can handle high-dimensional
investment problems. We focus on the influence of investment decisions on the spot price, consistently
with the fundamentals of the electricity spot price formation mechanism.

Although the strategic aspect of investment is an important driver of utilities’ decisions, this aspect is
beyond the scope of our modeling approach. There exist models limited to a two-stage decision making
(see for instance [48]), but in the case of continuously repeated multiplayer game models, defining what
is a closed-loop strategy is already a difficulty (see Sec. 2 in [7]).

We did not consider time-to-build in this implementation either. Relying on the fact that it is possible to
transform an investment model with time-to-build into a model without time-to-build by replacing ca-
pacities with committed capacities (see [9, 1] for implementations in dimension one, and [26] in dimension
two), we left this aspect for future work.

Finally, we did not consider the dynamic constraints of power generation. Their effect on spot prices is
well-known: they tend to increase spot prices during peak hours and to decrease them during off-peak
hours (see [41]). However, we assume here that this effect is negligible compared to the effect induced by
a lack or an excess of capacity.

Thus, we focused on the following key factors of electricity spot prices: demand, capacities (including
random outages) and fuel prices. Our model is based on [5, 4], where the electricity spot price is defined as
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a linear combination of fuel prices multiplied by a scarcity factor. This model exhibits the main feature
wanted here, which is that the spot price, being determined both by the fuel prices and the residual
capacity, is directly affected by the evolution of the installed capacity. When the residual capacity
tends to decrease, spot prices will tend to increase, making investment valuable. Thus, in this model,
investments are undertaken not on the specific purpose of satisfying the demand but as soon as they are
profitable. In our example, new capacities are invested according to the criterion of value maximization.
Energy non-served and loss of load probability may still be adjusted through the price cap on the spot
market.

In this section, we first detail the chosen modelling and objective function (which will be shown to be
encompassed in the general optimal multiple switching problem (2.1)), and then solve it numerically using
the general algorithm developed in the previous sections.

5.1 Modelling

The key variable in order to describe our electricity generation investment problem is the price of electric-
ity. More precisely, the key quantities are the spreads between the prices of electricity and other energies.
To model these spreads accurately, it may be worth considering a structural model for electricity (cf. the
survey [14]). Here we choose such a model, mainly inspired by those introduced in [5] and [4], albeit
amended and customized for a long-term time horizon. All the variables involved are detailed below.

5.1.1 Electricity demand

The electricity demand, or electricity load, at time t on the given geographical zone considered is modelled
by an exogenous stochastic process (Dt)t≥0:

Dt = f0 (t) + Z0
t (5.1)

where Z0 is an Ornstein-Uhlenbeck (henceforth O.U.) process:

dZ0
t = −α0Z

0
t dt+ β0dW

D
t

where α0 and β0 are constants, and f0 is a deterministic function that takes into account demand
seasonalities:

f0 (t) = d1 + d2 cos
(

2π t− d3
l1

)
+ fweek (t) (5.2)

where dj , 1 ≤ j ≤ 3 are constants, and, assuming that t is expressed in years, l1 = 1 (yearly seasonality),
and fweek is a periodic non-parametric deterministic function describing the intra-week load pattern.

5.1.2 Production capacities

Let d′ be the number of different production technologies. Denote as It =
(
I1
t , . . . , I

d′

t

)
the installed

production capacities at time t. They represent the maximum amount of electricity that is physically
possible to produce. These fleets can be modified: at a given time τn, one can decide to build (or
dismantle) an amount ζn of capacities:

Iτn = Iτ−n + ζn , n ≥ 0 (5.3)

Denote as α = (τn, ζn)n≥1 the corresponding impulse control strategy, where (τn)n≥0 is an increasing
sequence of stopping times with τn ↗∞ when n→∞, and (ζn)n≥0 is a sequence of vectors corresponding
to the increases (or decreases) in capacities. Apart from these variations, It will be deemed constant, i.e.:

It = I0− +
∑

n, τn≤t

ζn . (5.4)
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Now, denote as Ct =
(
C1
t , . . . , C

d′

t

)
the available production capacities. Because of spinning reserves,

maintenance and random outages, these quantities are lower than the installed capacities It, which
represent their physical maximum. In other terms, Ct is a fraction of It:

Cit = Iit ×Ait (5.5)

for every 1 ≤ i ≤ d′, where Ait corresponds to the rate of availability of the ith production technology.
Therefore one must choose a model for the process At that ensures that it stays within the interval [0, 1].

One possibility would be to model it as a Jacobi process (see for instance [58],where it is used to model
stochastic correlations, and the references therein for more information on this process). This process is
however tricky to estimate and simulate (see [31] for the description of some possible methods), and its
main simulation method (the truncated Euler scheme) disables our memory reduction method described
in Subsection 4.2. Hence we look for a simpler model.

In [60], a detailed structural model for electricity is developed, which includes renewable energies like
wind and solar. In particular, wind power infeed efficiency (which belongs to [0, 1]) is modelled as a logit
transform of an Ornstein-Uhlenbeck process with seasonality. Adapting this idea, we model

(
Ait
)1≤i≤d′
t≥0

as follows:
Ait := T

(
fi (t) + Zit

)
(5.6)

where Z, f and T are chosen as follows:

• Zi is an O.U. process :
dZit = −αiZitdt+ βidW

Zi

t

where αi > 0, βi > 0 and
(
WZi

t

)
t≥0

is a Brownian motion.

• The deterministic function fi accounts for the seasonality in the availability of production capacities:

fi (t) = ci1 + ci2 cos
(

2π t− c
i
3

l1

)
(5.7)

where cik, 1 ≤ k ≤ 3, 1 ≤ i ≤ d′ are constants. This seasonality stems from the maintenance plannings,
which usually mimic the long term seasonality of demand, which in turn originates in the seasonality
of temperature.

• The function T : R → [0, 1] is here to ensure that ∀t ≥ 0, At ∈ [0, 1]d
′
. One can choose the versatile

logit function as in [60], or any other mapping of R into [0, 1]. For instance, any cumulative distribution
function would be suitable. As the process Z is gaussian and asymptotically stationary, we choose for
T the (standard) normal cumulative distribution function, as it makes, in particular, the calibration
process trivial.

5.1.3 Fuels and CO2 prices

For each technology i, denote as Sit the price of the fuel i to produce electricity at time t. In the particular
case of renewable energies, which, per se, do not involve traded fuels, the corresponding Sit can be chosen
to be zero. Moreover, define S0

t as the price of CO2. Denote as St the full vector
(
S0
t , S

1
t , . . . , S

d′

t

)
.

Now, we introduce the multiplicative constants needed to convert theses quantities into e/MWh. For
each technology i = 1, . . . , d′, let hi denote its heat rate, and h0

i denote its CO2 emission rate. Hence,
the quantity

S̃it := h0
iS

0
t + hiS

i
t (5.8)

expressed in e/MWh, corresponds to the price in e to pay in order to produce 1MWh of electricity using
the ith technology. We note h0 =

(
h0

1, . . . , h
0
d′

)
∈ Rd′ and h = (h1, . . . , hd′) ∈ Rd′ .

Remark 5.1. One can choose to add a fixed cost into the definition of S̃it . This is all the more so relevant
for technologies whose fixed costs outweigh the cost of fuel (e.g. nuclear).
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Adapting the work of [10], we model St as a multidimensional, cointegrated geometric Brownian motion:

dSt = ΞStdt+ ΣStdWS
t

where Ξ and Σ are (d′ + 1) × (d′ + 1) matrices with 1 ≤ rank (Ξ) < d′, and
(
WS
t

)
t≥0 is a (d′ + 1)-

dimensional Brownian motion. This model ensures the positivity of prices, as well as the existence of
long-term relationships between energy prices (the relevance of which is illustrated, for instance, in [49]).

5.1.4 Electricity price

We model the price of electricity using a long-term structural model. First, we define the marginal cost
of electricity using the previously introduced variables. For any time t ≥ 0, define the permutation
(1) , . . . (M) of the numbers 1, . . . ,M , such that S(1)

t ≤ . . . ≤ S
(M)
t . Then, define C(i)

t as the total
capacity available at time t from the i first technologies, i.e. C(i)

t :=
∑
j≤i C

(j)
t . Using these notations

and equation (5.8), the marginal cost of electricity at time t is given by:

MCt : = S̃
(1)
t 1

{
Dt < C

(1)
t

}
+
M−1∑
i=2

S̃
(i)
t 1

{
C

(i−1)
t ≤ Dt < C

(i)
t

}
+ S̃

(M)
t 1

{
C

(M−1)
t ≤ Dt

}
= S̃

(1)
t +

M−1∑
i=1

(
S̃

(i+1)
t − S̃(i)

t

)
1
{
Dt − C

(i)
t ≥ 0

}
Refer to [5] for more details on marginal costs. Remark that the price of CO2 emissions is explicitly
included in the marginal cost (through equation (5.8)).

Now, we are going to use this marginal cost as a building block of our price model, along with some
power law scarcity premiums (along the lines of [4]) as well as a fixed upper bound 1.

First, consider two points (x1, y1) and (x2, y2) in R2. One can always find three positive constants
a := a (x1, x2, y1, y2), b := b (x1, x2, y1, y2) and c := c (x1, x2, y1, y2) such that the function:

p (x) := p (x;x1, x2, y1, y2) = a

b− x
+ c (5.9)

satisfies p (x1) = y1 and p (x2) = y2
2.

Using this notation, introduce the price Pt of electricity, defined as follows:

Pt := S̃
(1)
t 1 {Dt < 0}+

{
S̃

(1)
t + p

(
Dt; 0, C(1)

t , S̃
(1)
t , S̃

(2)
t

)}
1
{

0 ≤ Dt < C
(1)
t

}
d′−1∑
i=2

{
S̃

(i)
t + p

(
Dt;C

(i−1)
t , C

(i)
t , S̃

(i)
t , S̃

(i+1)
t

)}
1
{
C

(i−1)
t ≤ Dt < C

(i)
t

}
+
{
S̃

(d′)
t + p

(
Dt;C

(d′−1)
t , C

(d′)
t , S̃

(d′)
t ,Mmax

)}
1
{
C

(d′−1)
t ≤ Dt

}
(5.10)

where Mmax > 0 is a fixed upper bound on the price of electricity. In particular, the last term, the one
involving Mmax, enables price spikes to occur (when the residual capacity is small).

Moreover, thanks to the knitting function (5.9), the electricity price P is a Lipschitz continuous function
of the structural variables D, C and S 3, which is what motivated this specific choice of model.

1Indeed, in the French, German and Austrian markets for instance, power prices cannot be set outside the
[−3000, 3000]e/MWh range, see http://www.epexspot.com/en/product-info/auction..

2For instance, fix a > 0, then define b = 1
2

(
x1 + x2 +

√
(x2 − x1)2 + 4ax2−x1

y2−y1

)
and finally c = y1 − a

b−x1
.

3Rigorously, this property requires that C does not reach zero. One can, for instance, add a fixed minimum availability
rate 1� amin > 0 to the definition (5.6), replacing T by amin + (1− amin) T
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5.1.5 Objective function

We now explicit the objective function of the investor in electricity generation. Suppose that, at time t,
an agent (a producer, or an investor) modifies the level of installed capacity of type j ∈ [1, d′], from Ijt−
to Ijs = Ijt− + ζj , s ≥ t . It generates the cost:

k
(
ζj
)

:=


κf+
j + ζjκp+j , ζj > 0

0 , ζj = 0
κf−j − ζjκ

p−
j , ζj < 0

where κf+
j and κp+j are the fixed and proportional costs of building new plants of type j, and κf−j and

κp−j are the fixed and proportional costs of dismantling old plants of type j.

Consider the case of new plants (ζj > 0). Assuming that the global availability rate(5.6) of technology j
applies to the new plants, they can then produce up to ζjAjs, s ≥ t, or, more precisely, according to the
stack order principle:

min
{
ζjAjs,

(
Ds − C

(j−1)
s

)+
}

assuming that, in the stack order, the new plants are called before the older plants It− of the same
technology (as they can be expected to have an at least slightly better efficiency rate compared to the
older plants of the same technology, a phenomenon that can be seen as partly captured by the function
(5.9)).

At time s ≥ t, this production is sold at price Ps, but costs S̃s to produce (if Ps < S̃s, then of course
the producer chooses not to produce). In addition, regardless of the output level, there may exist a fixed
maintenance cost κj . Summing up all these gains, discounted to time t using a constant interest rate
ρ > 0, the new plant yield a revenue of:

ˆ ∞
t

e−ρs
(

min
{
ζjAjs, Ds − C

(j−1)
s

}
×
(
Ps − S̃js

)+
− κi

)
ds

(noticing that with our power price model,
{
Ds − C

(j−1)
s ≤ 0

}
⇔
{
Ps − S̃js ≤ 0

}
). This was the cost-

benefit analysis for one quantity ζj of new plants. Now, consider as a whole the full fleet of the geograph-
ical zone considered. Maximizing the expected gains along the potential new plants yields the following
value function:

v (t, x, i) = sup
α∈At,i

E

 d′∑
j=1

ˆ ∞
t

e−ρs
(

min
{
Cjs , Ds − C

(j−1)
s

}
×
(
Ps − S̃js

)+
− κi

)
ds−

∑
τn≥t

e−ρτnk
(
ζj
)

(5.11)
where the strategies α affect the installed capacities (equations (5.4)), hence also the available capacities
(equation (5.5)) as well as the power price (equation (5.10)), and where the cash flows are purposely
discounted up to time 0, the time of interest.
Remark 5.2. Replacing P in (5.11) by its definition (5.10), it is patent that this objective function fits
into the mould studied thoroughly in Section 3. In Subsection 5.2 below, our algorithm will be applied
to this specific objective function.

Remark 5.3. Remark that under this modelling, the demand is satisfied as long as it does not exceed the to-
tal available capacity. Indeed, the effective output of the plant ζj is equal to min

{
ζjAjs,

(
Ds − C

(j−1)
s

)+
}
×

1
{
Ps − S̃js > 0

}
. It is indeed governed by the electricity spot price level, but, as with our modelling

1
{
Ps − S̃js > 0

}
= 1

{
Ds − C

(j−1)
s > 0

}
, summing up the effective outputs of all the power plants yield∑d′

j=1 min
{
Cjs , Ds − C

(j−1)
s

}
× 1

{
Ds − C

(j−1)
s > 0

}
= min

{
Ds, C

(d′)
s

}
.
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5.2 Numerical results

Finally, we solve the control problem described in Subsection 5.1 on a numerical example, using the
algorithm detailed in Subsection 3 combined with the general memory reduction method described in
Subsection 4.2.

Our purpose here is not to perform a full study of investments in electricity markets, but a more modest
attempt at illustrating the practical feasibility of our approach, with some possible outputs that the
algorithm can provide.

We consider a numerical example including two cointegrated fuels (in addition to the price of CO2): one
“base fuel” and one “peak fuel”, starting respectively from 40e/MWh and 80e/MWh. Hence, using the
notations from Subsection 5.1, d′ = 2 (two technologies) and d = 6 ( electricity demand, CO2 price, two
fuel prices and two availability rates). The main choices of parameters for this application (initial fuel
prices and volatilities, initial fleet and proportional costs of new power plants) are summed up in Table
5.1.

i Si0 σi Ii0 κp+i
1 40e/MWh 5% 67GW 0.24 109e/GW
2 80e/MWh 15% 33GW 2.00 109e/GW

Table 5.1: Model parameters

Moreover, the demand process starts from D0 = 70GW and does not integrate any linear trend.

In order to take into account the minimum size of one power plant we restrict the values of the installed
capacity process(5.4) to a (bi-dimensional) fixed grid Λd′ , with a mesh of 1GW. We make the simplifying
assumptions that investments are irreversible, and that no dismantling can occur (recall from Subsection
4.1 the computational gain provided by this assumption).
Remark 5.4. If such a grid is indeed manageable in dimension d′ = 2, it may less be the case if additional
technologies were considered. However, as discussed in [55] equation (3.2), instead of performing one
regression for each i ∈ Λd′ , one can solve equation (3.16) at time ti by only one (d + d′)-dimensional
regression, by choosing an a priori law for the randomized control ζti . The error analysis from Section 2
can be easily generalized to such regressions in higher dimension.

Finally, we consider the following numerical parameters. We choose a time horizon T = 40 years and a
time step h = 1

730 (i.e. two time steps per day, allowing for some intraday pattern in the demand process)
but allow for only one investment decision per year. For the regression, we consider a basis of b = 2d = 64
adaptative local functions, chosen piecewise linear on each hypercube (which is a bit more refined than
the piecewise constant basis studied in Section 3) on a sample of M = 5000 trajectories.

The numerical results obtained under this set of parameters are displayed on Figures 5.1 and 5.2.

First, Figure 5.1 deals with the optimal strategies. Figure 5.1a displays the time evolution of the average
as well as the variability of the optimal fleet (only the new plants are shown). One can distinguish a
first short phase characterised by the construction of several GW of peak load assets, followed by a much
slower second phase involving the construction of both base load and peak load assets. Moreover, the
variability of the optimal fleet increases over time. The detailed histogram of the optimal strategy at
time T = 40 years is displayed on Figure 5.1b, where it is combined with the price of fuel. One can
see that the more the peak fuel is expensive (and hence both fuels are expensive on average, as they are
cointegrated), the more constructions of base load plants occur.

The fact that the average fleet seem to converge is related to the fact that this numerical example does not
consider any growth trend in the electricity demand (see equation (5.2)). Otherwise, more investments
would occur, indeed, to keep the pace with consumption.
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(a) Time evolution of new capacities (b) Final fleet distribution

Figure 5.1: Optimal strategies

Then Figure 5.2 provides information on the price of electricity. Figure 5.2a displays the time evolution
of the electricity spot price density. For better readability, each density covers one whole year. One can
see how the density moves away from the initial bimodal density (with prices clustering around the initial
prices of the two fuels) towards a more diffuse density. Moreover, the downward effect of investments on
prices can be noticed. This downward effect is even more visible on Figure 5.2b. It compares the effect
on electricity prices of three different strategies: the optimal strategy, the optimal deterministic strategy
(computed as the average of the optimal strategy), and the do-nothing strategy. For each strategy, the
joint time-evolution of the yearly median price and the yearly interquartile range are drawn. As expected,
prices tend to be higher and more scattered without any new plant. Nevertheless, on this specific example,
the price distribution under the optimal deterministic strategy is close to that under the optimal strategy
(only slightly more scattered).

(a) Time evolution of electricity spot price density (b) Comparison between investment strategies

Figure 5.2: Electricity spot price

These few pictures illustrate the kind on information that can be be extracted from the resolution of this
control problem. Of course, as a by-product of the resolution, much more can be extracted and analyzed
(distribution of income, CO2 emissions, optimal exercise frontiers, etc) if needed.
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6 Conclusion

In this paper, we presented a probabilistic method to solve optimal multiple switching problems. We
showed on a realistic investment model for electricity generation that it can efficiently provide insight into
the distribution of future generation mixes and electricity spot prices. We intend to develop this work in
several directions in the future. First, we wish to take into account more generation technologies, most
notably wind farms, nuclear production, as well as solar distributed production. These additions would
raise the dimension of the problem from eight to fifteen. Yet another range of innovations in numerical
methods will be necessary to overcome this increase in dimension. Second, we wish to take time-to-build
into account. And last but not least, we wish to adapt the problem to a continuous-time multiplayer
game and contribute to the quest for an efficient algorithm to solve it.
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