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Abstract

In open pit mining, one must dig a pit, that is, excavate the upper
layers of ground before reaching the ore. The walls of the pit must satisfy
some mechanical constraints, in order not to collapse. The question then
arises how to mine the ore optimally, that is, how to find the optimal
pit. We set up the problem in a continuous (as opposed to discrete)
framework, and we show, under weak assumptions, the existence of an
optimum pit. For this, we formulate an optimal transportation problem,
where the criterion is lower semi-continuous and is allowed to take the
value +∞. We show that this transportation problem is a strong dual
to the optimum pit problem, and also yields optimality (complementarity
slackness) conditions.

All references are to [1]The data:

• A compact subset E ⊂ R3

• A continuous function g : E → R

• A compact-valued map Γ : E � E, such that:

(reflexivity) z ∈ Γ (z)

(transitivity) [z2 ∈ Γ (z1) and z3 ∈ Γ (z2)] =⇒ z3 ∈ Γ (z1)

Write z2 � z1 for z2 ∈ Γ (z1). It is a partial ordering of E. A subset A ⊂ E is
stable if z ∈ A implies that Γ (z) ⊂ A. The family of all compact stable subsets
of E will be denoted by S (E):

A ∈ S (E)⇐⇒ A = ∪z∈AΓ (z)

The interpretations are as follows: E is the region (up to the surface) con-
taining the ore. The relation z2 ∈ Γ (z1) means that one must extract z2 before
extracting z1, and g is the net profit obtained by extracting dz at z, once it has
become accessible. Any mining profile A ⊂ E has to be stable, so that all the
ore in A can be extracted, and the corresponding profit is

∫
A
g (z) dz We are
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looking for the profile that maximizes profit, that is, we are trying to solve the
optimization problem:

max
∫
g (z) dz

A ∈ S (E)
(1)

We shall set it up as an optimal transportation problem. Assume the fol-
lowing:

Condition 1 E is stable, the graph of Γ is closed and g (z) > 0 for some z ∈ E

Introduce the following subsets of E

E+ : = {g (x) > 0}
E− : = {g (x) < 0}

Both E+ and E− are compact sets. We endow them with the measure
|g (z)| dz, so that the subsets {g (z) = 0} have measure zero. Introduce a source
α and a sink ω, and set:

X = E+ ∪ {α} , Y = E− ∪ {ω}

Both X and Y are compact sets. We endow them with the measures µ and
ν defined by:

µ ({α}) =
∫
E− |g (z)| dz, µ|E+ = g (z) dz

ν ({ω}) =
∫
E+ g (z) dz, ν|E− = |g (z)| dz

so that µ (X) = ν (Y ).
Define the cost c : X × Y −→ R as follows:

X Y c (x, y)
x ∈ E+ y ∈ Γ (x) 0
x ∈ E+ y /∈ Γ (x) , y ∈ E− +∞
x ∈ E+ y = ω 1
x = α y ∈ Y 0

Note that, because Γ has closed graph, c is lower semi-continuous (l.s.c.)
Let π be a positive measure on X × Y , and let πX and πY be its marginals.

Denote by Π (µ, ν) the set of all Radon probability measures such that πX = µ
and πY = ν. Now consider the optimal transportation problem in Kantorovitch
form:

min
∫
X×Y c (x, y) dπ

π ∈ Π (µ, ν)
(K)

where π is a positive measure, and πX and πY its marginals. Write the condi-
tional probabilities as Px and Py, so that:

π =

∫
X

Pxdµ =

∫
Y

Pydν
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Theorem 2 The minimum of problem (K) is attained. Assume that it is posi-
tive, finite, and attained at π :∫

X×Y
c (x, y) dπ > 0

Let B = {x | Px {(ω)} > 0}. Then A := ∪x∈BΓ (x) is the solution of problem
(P)

If the minimum is finite, then Px (Γ (x) ∪ {ω}) = 1 for almost every x,
so xdx is sent either to Γ (x) (at cost 0) or to ω (at cost 1). Clearly, be-
cause of the minimization, one will not start transporting mass at cost 1 un-
til all the possibilities of transporting at cost 0 have been exhausted: one
will never send mass at ω (that is, one will never have Px̄ ({ω}) > 0) unless∫
E+ Px (Γ (x̄)) dµ (x) = µ (Γ (x̄)) (that is, one has extracted all of Γ (x̄)).
Of course, all this has to be made rigorous. In order to to this, we introduce

the Kantorovitch dual of problem (K). Set:

A : =
{

(p, q) | p ∈ L1 (dµ) , q ∈ L1 (dν) , p (x)− q (y) ≤ c (x, y) (µ, ν) -a.s.
}

J (p, q) : =

∫
X

pdµ−
∫
Y

qdν

Consider the optimisation problem:

sup J (p, q)
(p, q) ∈ A (2)

The Kantorovitch duality result (see Theorem 1.3) states that:∫
X×Y

c (x, y) dπ ≤ J (p, q) ∀π ∈ Π (µ, ν) , ∀ (u, v) ∈ A

inf (K) = sup (D)

Proposition 3 Problem (K) has a solution

Proof. The set of positive Radon measures on the compact space X × Y is
weak-* compact, and the map π → Eπ [c] is weak-* l.s.c, so the result follows.

Proposition 4 Problem (D) has a solution

Proof. Because µ (X) = ν (Y ), there is a translation-invariance buit into the
problem: J (p+ a, q + a) = J (p, q) for all constants a. So, without loss of
generality, we may assume that q (ω) = 0.

Note that u1 ≤ u2 implies that J (u1, v) ≤ J (u2, v). Take a maximizing
sequence (pn, qn) ∈ L1 (µ) × L1 (ν), qn (ω) = 0. We get another maximizing
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sequence by setting:

pn (x) = min {1 + qn (ω) , inf {qn (y) | y ∈ Γ (x)}} (3)

pn (α) = min
{
qn (ω) , inf

{
qn (y) | y ∈ E−

}}
(4)

qn (y) = max {pn (α) , sup {pn (x) | y ∈ Γ (x)}} (5)

qn (ω) = max
{
pn (α) , sup

{
pn (x)− 1 | x ∈ E+

}}
(6)

It follows from (3), (4) and qn (ω) = 0 that pn (x) ≤ 1 for x ∈ E+ and
pn (α) ≤ 0. Writing this in (6), we find that there are two cases (after extracting
a subsequence): either pn (α) = qn (ω) = 0 for all n, or supx∈E+ pn (x) = 1.

If pn (α) = 0 for all n, we get from (4) and qn (ω) = 0 that qn (y) ≥ 0
for y ∈ E−. Writing this in (3), with pn (α) = 0,we find that pn (x) ≥ 0 for
x ∈ E+. Since we already know that pn (x) ≤ 1, and pn (α) = 0, we conclude
that 0 ≤ pn ≤ 1 on X. Similarly, we find from (5) that 0 ≤ qn ≤ 1 on Y .
So the family (pn, qn) is equi-integrable in L1 (µ) × L1 (ν). By the Dunford-
Pettis theorem, we can extract a subsequence which converges weakly to some
(p, q). Since the admissible set A is convex and closed, it is weakly closed, and
(p, q) ∈ A. Since J is linear and continuous, we get:

J (p, q) = lim
n
J (pn, qn) = sup

A
J

so that (p, q) ∈ A is an optimal solution.
If pn (α) < 0 for all n, then supx∈E+ pn (x) = 1.
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