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Abstract
Discrete time hedging produces a residual risk, namely, the tracking error. The

major problem is to get valuation/hedging policies minimizing this error. We
evaluate the risk between trading dates through a function penalizing asymmetri-
cally profits and losses. After deriving the asymptotics within a discrete time risk
measurement for a large number of trading dates, we derive the optimal strategies
minimizing the asymptotic risk in the continuous time setting. We characterize the
optimality through a class of fully nonlinear Partial Differential Equations (PDE).
Numerical experiments show that the optimal strategies associated with discrete
and asymptotic approach coincides asymptotically.

Keywords: hedging; asymmetric risk; fully nonlinear parabolic PDE; regres-
sion Monte Carlo.
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1 Introduction

Statement of the problem. The valuation and hedging of contingent claims are
major concerns in finance, both from a theoretical and a practical point of view. The
continuous time theory is well established (see [12], for instance). But, in practice,
hedging can be performed only at discrete times, say t0 = 0 < t1 < · · · < tN = T ,
yielding a residual risk. Here, we intend to hedge the claim HT at time T using d
hedging instruments with price processes X = (X(1), . . . , X(d)). So the local risk En
associated with the hedging times tn and tn+1 writes

En = Vtn+1 − Vtn − 〈ϑtn , Xtn+1 −Xtn〉. (1.1)
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Here, V stands for the valuation process and ϑ = (ϑ(1), . . . , ϑ(d)), for the hedging process,
Also, ϑ(i) denotes the number of shares invested in the i-th hedging instrument. Up to
considering discounted prices, we suppose the non-risky asset has zero drift.
In high-frequency hedging, the impact of discrete time hedging compared to continu-
ous time one is small (see, for instance, [10] for results about convergence rate). In
low-frequency hedging such as in energy markets [3], the local residual risk is slightly
bigger and may become an issue. Our aim is to find the valuation/hedging rules (V, ϑ)
minimizing this risk. We differ from the existing results (for instance, those related to
the quadratic local risk minimization [6, 19]) by dealing with a risk function ` penalizing
asymmetrically profits (En < 0) and losses (En > 0). So the integrated local risk under
study takes the form

EN (V, ϑ) =
N−1∑
n=0

E[`(En)].

The simplest case of such a risk function ` is

`γ(y) = (1 + γ Sgn(y))2 y2/2 (1.2)

where γ ∈ (0, 1) to penalize losses further than profits (see Figure 1). We define the
above sign function as Sgn(y) := Iy>0 − Iy<0.
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Figure 1: Plot of the risk function `γ for different γ.

In this setting, our aim is to study the asymptotics of the minimum

min
(V,ϑ)∈AV,ϑ
VT=HT

EN (V, ϑ) (1.3)

as the number N of hedging dates becomes larger. To simplify we take equidistant
hedging times tn = nεN with time step εN = T/N . The minimum (1.3) is computed
over the set AV,ϑ of all adapted to the underlying filtration (Ft)t≥0 and appropriately
integrable pair (V, ϑ), under the replication constraint VT = HT .
There are a few results in that direction. In [15], the author deals with a Lp risk function
of the losses and a fixed number trading dates. In [16], the authors consider expected
shortfall risk function. Their research concentrates on numerics for a fixed number of
dates and does not handle any asymptotic analysis. In [1], the authors study pseudo-
optimal strategies and get asymptotic results under the condition that the risk function
is of class C3. So their analysis discards the prototype risk function (1.2). Indeed, the
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discontinuity of the second derivative `′′γ complicates the analysis and fully changes the
nature of subsequent results. In short, the existing references consider different settings
and difficulties from ours.

Exogenous reference valuation and f-PDE valuation. The minimization prob-
lem (1.3) appears attractive, but its study in the asymptotic regime N → +∞ is tough
in the case of asymmetric risk function (1.2). To tackle this problem, we slightly modify
the approach.
First, we suppose the hedging instruments are modeled by a Stochastic Differential
Equation (SDE) with drift µ and diffusion σ. We also consider contingent claims of
the form HT = h(XT ). Second, we suppose that the contingent claim is evaluated
exogenously by a valuation process Vt = v(t,Xt) for some function v. For instance, v is
given by a mark-to-model value promoted by the regulator or the central counterparty
(CCP). The latter imposes its minimum margin requirement to which the hedging entity
has to comply with. Given this exogenous reference valuation, the trader will determine
how to hedge on each interval [tn, tn+1] by choosing an adapted valuation/hedging rule
(Ṽtn , ϑ̃tn) and considering the related conditional local risk

Rn(γ) = E
[
`γ(Vtn+1 − Ṽtn − 〈ϑ̃tn , Xtn+1 −Xtn〉)

∣∣ Ftn]. (1.4)

To clarify, the valuation/hedging rule of the trader will be parametrized by a function
f , possibly nonlinear. Inspired by the connection between dynamic risk valuations,
nonlinear Partial Differential Equations (PDE) and nonlinear Backward SDEs [5, 14, 4],
we introduce the concept of the f -PDE valuation. Let

σ : [0, T ]× Rd → Rd×d, f : [0, T ]× Rd × R× Rd × Rd×d → R

be continuous functions. Let τ ∈ (0, T ] be a time horizon and let v(τ, ·) be a reference
valuation at the time τ . Given τ and v(τ, ·), the function uτ : [0, τ ] × Rd → R is a
solution to the f -PDE, if it satisfies

∂tuτ (t, x) + 1
2 Tr

[
σσᵀD2

xuτ
]
(t, x)

+ f(t, x, uτ (t, x), Dxuτ (t, x), D2
xuτ (t, x)) = 0,

(1.5)

for all (t, x) ∈ [0, T ] × Rd with the terminal condition uτ (τ, x) = v(τ, x) at the time τ .
The f -PDE valuation is the mapping from (τ, v(τ, ·)) to the f -PDE (1.5) solution uτ ;
this is typically the nonlinear valuation/hedging rule of the trader. We refer to f as
the kernel and f ≡ 0 corresponds to the usual risk-neutral valuation [12], other kernels
appear in [5] for instance. Then, in the conditional local risk expression given by (1.4),
we naturally set

Ṽtn = u(n+1)(tn, Xtn), ϑ̃tn = Dxu
(n+1)(tn, Xtn),

where we denote u(n+1) := utn+1 .

Our contributions. Our first main result is to prove the existence (Theorem 2.1) of
the following limit, called the asymptotic risk,

Rγ(v, f) = lim
N→+∞

1
εN

N−1∑
n=0

E[Rn(γ)].
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Moreover, we give an explicit expression for Rγ(v, f) depending on γ, v, f, σ, X and T .
Then, we discuss the existence of an optimal kernel f∗ such that the f∗-PDE valuation
minimizes the asymptotic risk in the sense

Rγ(v, f∗) ≤ Rγ(v, f), (1.6)

for any admissible f . In the one-dimensional case, this optimal kernel f∗ is explicit
(see (2.15)) and it depends on the risk parameter γ, on the reference valuation second
derivative and on the price process volatility.
Now, a natural choice for the reference valuation may be the solution to the f∗-PDE
(1.5). Here, the payoff h : R→ R is the f∗-PDE terminal condition at the time T . We
denote by v∗ the resulting valuation. In dimension one, this PDE takes the form

∂tv
∗(t, x)+ 1

2σ
2(t, x) ∂2

xv
∗(t, x)+ c∗1σ

2(t, x) (∂2
xv
∗(t, x))+− c∗2σ2(t, x) (∂2

xv
∗(t, x))− = 0

for some constants c∗1 ≥ 0 and c∗2 ≤ 0 depending on the risk parameter γ. In higher
dimension, v∗ solves a fully nonlinear PDE with a nonlinear term depending on the
Hessian D2

xv
∗ (see the nonlinear PDE (2.12)).

It gives somehow a consistent way to valuate the claim h by accounting for local hedging
errors measured with the asymmetric risk function `γ . To the best of our knowledge, this
work is an original contribution, where local hedging errors are analyzed with asymmetric
risk function. We perform the asymptotics of a large number of trading dates and we
derive an optimal valuation/hedging policy.
Summing up, instead of minimizing (1.3) and then taking the limit in N after rescaling
by εN , we take first the limit in N of the cumulated integrated local risk for a wide
class of f -PDE valuation and then minimize over all kernels f . We do not prove that
inverting minimization and limit holds true in this setting. In other words, we do not
state the limit of the minimum (1.3) rescaled by εN corresponds to Rγ(v∗, f∗). However,
our numerical tests in dimension one seem to corroborate this fact. Proving this result
rigorously is, so far, an open problem, that we expect to handle in the next future.
The paper is structured as follows. Below, we present the notations and conventions
used throughout the paper. In Section 2, we define the stochastic setting, then state
the assumptions and the main results. The proofs are gathered in Section 3. Section 4
contains our numerical experiments. Some technical results are collected in Appendix 5.

Usual notations. Let d ∈ N∗ and let a, b in Rd. We denote by 〈a, b〉 =
∑d
i=1 aibi

the scalar product on Rd, adopted for both row or column vectors a and b. We set
‖a‖ =

√
〈a, a〉. We denote byMd the set of all d×d matrices with real entries. By Sd we

denote all symmetric matrices inMd. Let A ∈Md, we denote Tr[A] and Aᵀ respectively
the trace and the transpose of a matrix A. For A inMd, we set ‖A‖ =

√
Tr[AAᵀ].

Let E,E′ be two generic Euclidean space and let φ : [0, T ]×E be a E′-valued function.
In this paper, we say φ satisfies a local regularity condition in time and space if for some
real q > 0 the coefficient

‖φ‖H1/2,1
loc,pol

:= sup
t,t′∈[0,T ]
t 6=t′

sup
x,x′∈E
x6=x′

‖φ(t, x)− φ(t′, x′)‖
(|t− t′|1/2 + ‖x− x′‖)(1 + ‖x‖q + ‖x′‖q)

is finite, then φ is said to be in H1/2,1
loc,pol. We are aware that ‖φ‖H1/2,1

loc,pol
depends on q

but in the following, the precise value of q is unimportant and we prefer to avoid the
reference to q in the notation ‖φ‖H1/2,1

loc,pol
for the sake of simplicity.
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Observe that φ ∈ H1/2,1
loc,pol means that φ is locally 1/2-Hölder continuous in time and

Lipschitz continuous in space; and it has polynomial growth in space uniformly in time.
Furthermore, we assert that for any φ1 and φ2 in H1/2,1

loc,pol, the product φ1φ2, the pair
(φ1, φ2) and the composition φ1(t, φ2(t, ·)) and are also in H1/2,1

loc,pol.
The set C1,2([0, T ] × E,E′) denotes the set of functions φ : [0, T ] × E → E′ such that
the partial derivatives ∂tφ, ∂xiφ, ∂xi∂xjφ exist and are continuous, for any 1 ≤ i, j ≤ d.
When E = Rd and the domain E′ is unambiguous, we simply write C1,2([0, T ]× Rd).
For every function φ ∈ C1,2([0, T ] × Rd,R), we denote its gradient in space by a row
vector Dxφ = (∂xiφ)1≤i≤d and its Hessian by D2

xφ = (∂xi∂xjφ)1≤i,j≤d. Also, let Ltφ :
[0, T ]× Rd → R be given by

Ltφ(t, x) = ∂tφ(t, x) + 1
2 Tr

[
σσᵀD2

xφ
]
(t, x).

Notice that φ, ∂tφ, Dxφ, D
2
xφ ∈ H1/2,1

loc,pol is a sufficient condition to have φ ∈ C1,2 and
be able to apply Ito’s formula.

2 Model, assumptions and main results

2.1 Probabilistic risk model

We fix a finite time horizon T > 0. Let W = (W (1), . . . ,W (d)) : [0, T ] × Ω → Rd be a
standard Brownian motion on a probability space (Ω,F ,P). Let F = {Ft, t ∈ [0, T ]} be
the augmented and completed filtration generated by W . We consider the F-adapted
process X = (X(1), . . . , X(d)) : [0, T ] × Ω → Rd satisfying the following stochastic
differential equation (SDE)

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt, (2.1)

with initial value X0 = x0 ∈ Rd. The coefficients µ : [0, T ] × Rd → Rd and σ :
[0, T ]× Rd →Md are Lipschitz in space uniformly in time (see Assumption A1 later).
Given N ∈ N∗ equidistant hedging times {t0 = 0 < t1 < · · · < tN = T} on the interval
[0, T ], with tn = nεN and εN = T/N , we write

ϕNt := sup {tn | tn ≤ t} , ϕ̄Nt := inf {tn | tn > t}

and the increment of X from tn to tn+1 as ∆Xn = Xtn+1 −Xtn .
In the following we systematically consider the risk function `γ as defined in (1.2). It
is a convex and continuously differentiable function satisfying `γ(0) = `′γ(0) = 0 and
`γ(y) = `−γ(−y). In addition, it is symmetric if and only if γ = 0. Further, `′γ is a
piecewise continuously differentiable function with `′′γ being discontinuous as soon as
γ 6= 0:

`′γ(y) = (1 + γ Sgn(y))2y, `′′γ(y) = (1 + γ Sgn(y))2, (2.2)

where `′′γ is extended to zero as `′′γ(0) = 1, owing to Sgn(0) = 0 (see Figure 2). In all the
sequel, we assume γ ∈ [0, 1).
For a payoff function h : Rd → R, the input of our approach are a reference valuation
v : [0, T ]×Rd → R such that v(T, ·) = h(·) and a kernel f : [0, T ]×Rd×R×Rd×Sd → R.
Both are assumed to be smooth functions (see Assumptions A2 and A3). So we associate
the f -PDE valuation giving rise to the family of functions utn+1 : [0, tn+1] × Rd → R
indexed by hedging times tn+1. These functions are the solutions to the PDE (1.5)
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Figure 2: Plot of the risk function `γ derivatives for different γ: `′γ (left) and `′′γ (right).

with Cauchy boundary condition utn+1(tn+1, ·) = v(tn+1, ·) at time horizon tn+1. Also,
they are assumed to be smooth in the sense of Assumption A4. In this context, we set
u(n+1) = utn+1 and define the local residual risk En : Ω→ R (see (1.1)) by

En = u(n+1)(tn+1, Xtn+1)− u(n+1)(tn, Xtn)−Dxu
(n+1)(tn, Xtn)∆Xn (2.3)

and the conditional local risk

Rn(γ) = E
[
`γ(En)

∣∣ Ftn]. (2.4)

As explained in introduction, our aim is to analyze the asymptotic behavior of the
integrated conditional local risk, after appropriate renormalization,

RN,γ(v, f) = 1
εN

N−1∑
n=0

E[Rn(γ)]. (2.5)

2.2 Asymptotic risk Rγ given a reference valuation v and a ker-
nel f

Here, we study the asymptotic risk Rγ (as defined in (1.5)) where a reference valuation
v and a kernel f are given. We state the following assumptions.

Assumption A1. The coefficients µ : [0, T ]×Rd → Rd and σ : [0, T ]×Rd →Md are
in H1/2,1

loc,pol.

Assumption A2. The reference valuation v : [0, T ]× Rd → R is in H1/2,1
loc,pol. Further,

Dxv and D2
xv exist and are in H1/2,1

loc,pol.

Assumption A3. The kernel f : [0, T ]× Rd × R× Rd × Sd → R is in H1/2,1
loc,pol.

Assumption A4. For all τ ∈ (0, T ], there is a unique classical solution uτ to the
PDE (1.5) with the terminal condition uτ (τ, ·) = v(τ, ·) at the time τ . In addition,

∂tuτ , ∂xiuτ , ∂xi∂xjuτ , ∂t∂xiuτ , ∂xi∂xj∂xkuτ ,

exist and are in H1/2,1
loc,pol.
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Assumption A5. A non-degeneracy condition: the symmetric matrix (σᵀ(D2
xv)σ)(t,Xt)

is not 0 dt⊗ dP-a.e.

For stating the asymptotic result below, we need to introduce an extra Brownian motion
B, independent of W , with the same dimension as W . All these are defined on an ex-
tended probability space with obvious definitions. Whenever necessary, the expectation
w.r.t. the distribution of B, or W , or both, is denoted by EB , or EW , or EW⊗B .

Theorem 2.1. Let B =
(
B(1), . . . , B(d)) : [0, 1]× Ω→ Rd be another standard Brow-

nian motion independent from W . Consider RN,γ(v, f) given by (2.5) in the following
form

RN,γ(v, f) = 1
εN

N−1∑
n=0

E
[
`γ(En)

]
,

where En is given by (2.3). Under the Assumptions A1-A5, the limit of RN,γ(v, f) as
N →∞ exists and is given by,

Rγ(v, f) = E

[∫ T

0

∫ 1

0
`′′γ

(∫ θ

0
Bᵀ
θ′GtdBθ′ − Ftθ

)

×

(
F 2
t θ − Ft

∫ θ

0
Bᵀ
θ′GtdBθ′ + ‖GtBθ‖2/2

)
dθ dt

]
,

(2.6)

where

Ft = f
(
t,Xt, v(t,Xt), Dxv(t,Xt), D2

xv(t,Xt)
)
∈ R,

Gt =
(
σᵀ(D2

xv)σ
)
(t,Xt) ∈ Sd

The long and delicate proof is postponed to Section 3.

2.3 Optimizing over the kernel f

Here, we study the optimization problem over the kernel f described in (1.6). To precise
the definition of optimal kernel f∗, we rewrite the asymptotic risk in (2.6) as a functional
Rγ : Ωv × Ωv → R given by

Rγ(v, f) = E

[∫ T

0
Rγ (Gt, Ft) dt

]
,

where Rγ : Sd × R→ R is

Rγ(S, a) = E

[∫ 1

0
`′′γ

(
(Bᵀ

θSBθ − Tr[S]θ) /2− aθ
)

×
(
a2θ − a (Bᵀ

θSBθ − Tr[S]θ) /2 + (Bᵀ
θS

ᵀSBθ) /2
)

dθ
]
,

(2.7)

with
Ωv =

{
v ∈ H1/2,1

loc,pol

∣∣∣ Dxv,D
2
xv ∈ H1/2,1

loc,pol

}
, Ωf =

{
f ∈ H1/2,1

loc,pol

}
.

We aim at proving the existence of minimizers to the variational problem

min
f∈Ωf

Rγ(v, f), (2.8)
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for all v ∈ Ωv. Observe that the minimizer f†(t, x, y, z, A) defined by (for any fixed
(t, x, y, z, A))

f†(t, x, y, z, A) = argmin
a∈R

Rγ
((
σᵀAσ

)
(t, x), a

)
,

is also a minimizer to (2.8) under the condition to be in Ωf . Indeed, we just need to
integrate and to take the expectation in both sides of

Rγ
(
G(t,Xt), f†

(
t,Xt, v(t,Xt), Dxv(t,Xt), D2

xv(t,Xt)
))
≤ Rγ (G(t,Xt), F (t,Xt)) .

This is why we seek a minimizer to a 7→ Rγ(S, a) for a given symmetric matrix S.
We now prove the existence of a minimizer.

Proposition 2.2. Let γ ∈ [0, 1) and S ∈ Sd. Consider the minimization problem

min
a∈R

Rγ(S, a). (2.9)

Under the hypothesis of Theorem 2.1, there exists a global minimizer a∗ ∈ R such that
Rγ(S, a∗) ≤ Rγ(S, a) for all a ∈ R.

If a∗ is unique, a natural candidate for f∗ is then given by

f∗(t, x, y, z, A) = a∗(σᵀ(t, x)Aσ(t, x)), (2.10)

for any t, x, y, z, A ∈ [0, T ]× Rd × R× Rd × Sd.

Proof. First, we show that the function Rγ(S, a) is coercive and continuous in a. For any
θ ∈ (0, 1], we consider Zaθ = (Bᵀ

θSBθ − Tr[S]θ)/2 − aθ. Through simple computations,
we check that Zaθ is continuous in a and integrable w.r.t. dPB ⊗ dθ.
Regarding the coercivity, we exhibit a coercive function which bounds Rγ(S, a) from
below. Owing to the boundedness of `′′γ , we estimate

`′′γ
(
Zaθ
)(
− aZaθ + ‖SBθ‖2/2

)
≥ (1− γ)2

(
a2θ + ‖SBθ‖2/2

)
− (1 + γ)2|a| (|Bᵀ

θSBθ|+ |Tr[S]|θ) /2,

dPB ⊗ dθ-almost surely. By integrating in θ and taking the expectation of the previous
estimate, we get

Rγ(S, a) ≥ (1− γ)2
(
a2/2 + Tr[SᵀS]/4

)
− (1 + γ)2|a| (E|GᵀSG|+ |Tr[S]|) /4,

where G is a standard normal random vector. Then we conclude that a 7→ Rγ(S, a) is
coercive.
Regarding the continuity, we first take S = 0 and we get

Rγ(0, a) = (1 + γ Sgn(−a))a2/2.

Therefore, a 7→ Rγ(0, a) is a continuous and strictly convex function. Then we conclude
that there is a unique global minimizer given by a∗ = 0. Now we take S 6= 0 and
decompose Rγ(S, a) as follows

Rγ(S, a) = −E
[∫ 1

0
aZaθ `

′′
γ

(
Zaθ
)
dθ
]

+ 1
2E
[∫ 1

0
`′′γ
(
Zaθ
)
‖SBθ‖2dθ

]
. (2.11)

By replacing the expression of `′′γ (see Equation (2.2)), we get

a 7→ aZaθ `
′′
γ

(
Zaθ
)

= (1 + γ2)aZaθ + 2γa|Zaθ |,

8



which is continuous dPB ⊗ dθ-almost surely and bounded by (1 + γ)2|a||Zaθ | (integrable
w.r.t. dPB ⊗ dθ locally uniformly in a). By the dominated convergence theorem, we
conclude the first term of the decomposition in (2.11) is continuous in a. Also, we esti-
mate

∣∣`′′γ(Zaθ )‖SBθ‖2∣∣ ≤ (1 + γ2)‖SBθ‖2, which is integrable uniformly in a. Following
that Bᵀ

θSBθ has a density w.r.t. the Lebesgue measure (see the proof of Proposition 5.3
in Appendix), we get Zaθ 6= 0, dPB ⊗ dθ-almost surely. It holds that

a 7→ `′′γ
(
Zaθ
)
‖SBθ‖2

is continuous dPB ⊗ dθ-almost surely, due to the continuity of `′′γ on R∗. Now, we
conclude the second term of the decomposition in (2.11) is also continuous in a, by
applying again the dominated convergence theorem. Therefore, we have proved that
Rγ(S, a) is continuous in a.
Let α ∈ R large enough such that K = {a : Rγ(S, a) ≤ α} is non-empty. Due to the
continuity and coercivity of Rγ(S, a), K is compact. Then, by Weierstrass’s Theorem,
we conclude the announced result.

Here, we have just shown the existence of a minimizer a∗ to the Problem (2.9) for a
given symmetric matrix S. The regularity of a∗(S) has not been analysed, because
the uniqueness has not been proved. In fact, the uniqueness and smoothness of f∗
of the problem (2.8) is challenging in the general case. Certainly, if a∗(S) is unique,
then we could define f∗ as in (2.10). Then, a natural candidate for the self-consistent
valuation/hedging rule is given by the solution to nonlinear PDE{

∂tv
∗(t, x) + 1

2 Tr
[
σσᵀD2

xv
∗](t, x) + a∗(σᵀ(t, x)D2

xv
∗(t, x)σ(t, x)) = 0,

v∗(T, x) = h(x).
(2.12)

This PDE is fully nonlinear with a nonlinear term depending on the Hessian. Unfortu-
nately, in full generality, we are not able to prove the existence/uniqueness of a solution
v∗ satisfying Assumption 2. Also proving that the new kernel f∗ fulfills Assumption 3 is
not straightforward. Fortunately, the one-dimensional case provides us a quasi-explicit
formulation for a∗, which hopefully is a first step in the analysis of the PDE (2.12).
Further investigation is left to future research.

2.4 Quasi-explicit solution in the one-dimensional case

In this subsection, we present a quasi-explicit formulation of the optimal kernel f∗ in the
one-dimensional case. Here, (Bᵀ

θSBθ − Tr[S]θ)/2 becomes (B2
θ − θ)y/2 for y = S ∈ R.

So, we rewrite the function Rγ (S, a) given by (2.7) as

Rγ(y, a) = E
[∫ 1

0
`′′γ

(
y
(
B2
θ − θ

)
/2− aθ

)(
a2θ − ay

(
B2
θ − θ

)
/2 + y2B2

θ/2
)

dθ
]
.

Let a∗ ∈ R a global minimizer of mina∈RRγ(y, a). In the following proposition, we sum
up some interesting properties of a∗. We denote by ΦN the cumulative distribution
function (CDF) of the standard normal distribution and φN = Φ′N its density.

Proposition 2.3. Let γ ∈ [0, 1).

(a) Let c∗1 ∈ R and c∗2 ∈ R be global minimizers of

min
c∈R

Rγ(1, c) and min
c∈R

Rγ(−1, c),

9



respectively. Then a∗(y) = c∗1yIy>0 + c∗2yIy<0 is a global minimizer of

min
a∈R

Rγ(y, a).

(b) The mapping
c 7→ Rγ(1, c) and c 7→ Rγ(−1, c)

are strictly convex. Thus, c∗1 and c∗2 are unique characterized by(
1 + γ2) c∗1 + γ T (c∗1) = 0 and

(
1 + γ2) c∗2 − γ T (c∗2) = 0,

respectively, where

T (c) = 2cI2c+1≤0 +
(

8cΦN
(
−
√

2c+ 1
)
− 4φN

(√
2c+ 1

)√
2c+ 1− 2c

)
I2c+1>0.

Therefore, the minimizer a∗(y) is unique.

Proof. (a) We start by the special case y = 0, we get Rγ(0, a) = (1 + γ Sgn(−a))2a2/2.
So, a∗(0) = 0. Now we consider the more interesting case y 6= 0. By setting c = a/y, we
rewrite Rγ(y, a)

Rγ (y, c y) = E
[∫ 1

0
`′′γ

(
(B2

θ − θ)/2− cθ
)(
c2θ − c(B2

θ − θ)/2 +B2
θ/2
)

dθ
]
y2Iy>0

+ E
[∫ 1

0
`′′γ

(
− (B2

θ − θ)/2 + cθ
)(
c2θ − c(B2

θ − θ)/2 +B2
θ/2
)

dθ
]
y2Iy<0

(2.13)

because `′′γ(yζ) = `′′γ(ζ) if y > 0 and `′′γ(yζ) = `′′γ(−ζ) if y < 0, for any ζ ∈ R.
Consider a global minimizer c?(y) of minc∈RRγ(y, c y), then a∗(y) = c?(y) y is also a
global minimizer of mina∈RRγ(y, a). Because (y, c) 7→ Rγ (y, c y) is multiplicatively
separable on y > 0 and on y < 0, we write c∗(y) = c∗1Iy>0 + c∗2Iy<0, where c∗1 and c∗2 are
respectively global minimizers of minc∈RRγ(1, c) and minc∈RRγ(−1, c).
(b) Let G be a standard normal random variable. It will be useful later to know
E[G2IG<α] for any real α : we have

E
[
G2IG<α

]
= −αφN (α) + ΦN (α) ,

E
[
G2IG>α

]
= αφN (−α) + ΦN (−α) ,

E
[
G2I−α<G<α

]
= −2αφN (−α) + (ΦN (α)− ΦN (−α)) .

(2.14)

It holds that Bθ ∼
√
θG for all θ in [0, 1]. From (2.13), we get

Rγ(1, c) = 1 + γ2

2 T1(c) + γ T2(c), Rγ(−1, c) = 1 + γ2

2 T1(c)− γ T2(c),

where

T1(c) = E
[
c2 − c(G2 − 1)/2 +G2/2

]
= c2 + 1/2,

T2(c) = E
[
Sgn

(
(G2 − 1)/2− c

) (
c2 − c(G2 − 1)/2 +G2/2

)]
.

Considering α(c) =
√

2c+ 1, it holds

Sgn
(
(G2 − 1)/2− c

)
= I2c+1<0 + I2c+1>0

(
IG<−α(c) + IG>α(c) − I−α(c)<G<α(c)

)
.

10



From the expectations in (2.14), we deduce

T2(c) = I2c+1<0
(
c2 + 1/2

)
+ I2c+1>0

(
c2 + c/2

)
E
[
IG<−α(c) + IG>α(c) − I−α(c)<G<α(c)

]
+ I2c+1>0 (1/2− c/2)E

[
G2IG<−α(c) +G2IG>α(c) −G2I−α(c)<G<α(c)

]
= I2c+1<0

(
c2 + 1/2

)
+ I2c+1>0 β(c),

where
β(c) =

(
c2 + 1/2

)
(3− 4ΦN (α(c))) + 2 (1− c)α(c)φN (α(c)) .

We easily check that Rγ(1, c) and Rγ(−1, c) are C0 and piecewise C2. Let us compute
their first derivatives for c < −1/2 and c > −1/2

∂cRγ(1, c) =
(
1 + γ2) c+ γ (I2c+1<0 2c+ I2c+1>0 β

′(c))
= I2c+1<0 (1 + γ)2

c+
((

1 + γ2) c+ γ β′(c)
)
I2c+1>0,

∂cRγ(−1, c) =
(
1 + γ2) c− γ (I2c+1<0 2c+ I2c+1>0 β

′(c))
= I2c+1<0 (1− γ)2

c+
((

1 + γ2) c− γ β′(c)) I2c+1>0,

where
β′(c) = 8cΦN (−

√
2c+ 1)− 4φN (

√
2c+ 1)

√
2c+ 1− 2c.

Standard computations show that ∂cRγ(−1, c) and ∂cRγ(1, c) are continuous at c =
−1/2. Moreover, we see that ∂cRγ(1, c) and ∂cRγ(−1, c) are strictly increasing on c
under the condition that |β′′(c)| ≤ 2 on 2c+ 1 > 0. Indeed, we have

β′′(c) = 6− 8 ΦN
(√

2c+ 1
)
∈ [−2, 2].

due to ΦN (
√

2c+ 1) ∈ [1/2, 1] for all 2c + 1 > 0. Because Rγ(1, c) , Rγ(−1, c) are
strictly convex, the optimal values c∗1 and c∗2 are unique and characterized respectively
by ∂cRγ(1, c∗1) = 0 and ∂cRγ(−1, c∗2) = 0.

We depict the global minimizer a∗ in Figure 3. We show the approximate values of c∗1
and c∗2 calculated by a root finding algorithm in Table 1.

��� ��� ��� ���
γ

-���

���

���

���

���

���

���

(a) Plot of c∗
1(γ) (blue line) and c∗

2(γ) (pur-
ple dashed) on [0.0, 0.9].

(b) Plot of a∗(γ, y) on [0, 0.3] × [−1, 1].

Figure 3: Global minimizer a∗(y).

Therefore, in the spirit of Equation (2.10), we set

f∗(t, x, y, z, A) = f∗γ (σ2(t, x)A)

with f∗γ denoting the optimal kernel in dimension 1:

f∗γ (y) := a∗(y) = c∗1yIy>0 + c∗2yIy<0. (2.15)
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γ c∗1 c∗2

0.1 0.1043 -0.09013
0.2 0.2262 -0.1684
0.3 0.3702 -0.2366

Table 1: Optimal slopes c∗1 and c∗2.

3 Proof of Theorem 2.1

The proof is long and technical. For this reason, we split it into different stages.

• First, we study the conditional local risk Rn(γ) on the interval [tn, tn+1], by using
a time-space rescaling argument (see Subsection 3.1). This rescaling turns out to
be essential to pass to the limit later.

• Second, we derive an explicit approximation of the conditional local risk Rn(γ)
(see Subsection 3.2).

• Finally, we prove that the remainder terms converge almost surely towards 0.
For this, we show that the Greeks of uτ (t, ·) converge to those of v(τ, ·) as t ↑ τ
(see Subsection 3.3). Also, we show that the set of discontinuity points of `′′γ has
measure zero under the Assumption A5.

In the proof, we use several constants Cn,N (ξ) depending polynomially on the space
variable ξ (uniformly in the interval [tn, tn+1] and in the number of time steps). To
simplify, we note Cn,N (ξ) ∈ Cpol if for some real q > 0,

sup
N∈N∗

sup
0≤n≤N−1

sup
ξ∈Rd

|Cn,N (ξ)|
1 + ‖ξ‖q < +∞.

This upper bound depends on the polynomial bounds on the functions µ, σ, f, v and u.

3.1 Preliminary time-space rescaling and conditioning

First, we start by a few observations.

• Thanks to the Markov property of the SDE and in view of our smoothness assump-
tions, Rn(γ) is a continuous function of tn and Xtn only (see Equation (2.4));

• Rn(γ) goes to zero at rate ε2
N , because we prove that the remainder of a second-

order stochastic Taylor expansion will be inside `γ . Rescaling it by εN , we expect
to get a non-zero limit for the aggregated value of Rn(γ) (see Equation (2.5));

• Note that `′′γ has a jump discontinuity at zero (see Equation (2.2)). Then to
decompose the conditional local risk, we will need to apply a stronger version of
Ito’s formula, known as, the Ito-Tanaka formula.

In view of a Taylor-Ito expansion, we consider the process XεN = {XεN
θ , θ ∈ [0, 1]}

satisfying

dXεN
θ = εNµ (tn + θεN , X

εN
θ ) dθ + ε

1/2
N σ (tn + θεN , X

εN
θ ) dBθ, XεN

0 = ξ ∈ Rd, (3.1)

where B is an extra Brownian motion independent from W . It is a time-space rescaling
of the original process starting from ξ at tn.

12



By denoting Xt,ξ
· as the SDE solution starting from ξ at t, we notice that the processes{

Xtn,ξ
tn+θεN , θ ∈ [0, 1]

}
and {XεN

θ , θ ∈ [0, 1]} have the same distribution. This is due
to the fact both processes satisfy the same SDE generated by Brownian motions both
independent from Ftn . Then we can rewrite Rn(γ) (see (2.4)) as a continuous function
in terms of Xtn and XεN

θ . Setting

T εN (tn, ξ) =

ε−2
N EB

[
`γ

(
u(n+1)(tn+1, X

εN
1 )− u(n+1)(tn, ξ)−Dxu

(n+1)(tn, ξ) (XεN
1 − ξ)

)]
,

leads to
Rn(γ) = ε2

NT
εN (tn, Xtn). (3.2)

3.2 Stochastic expansion of the conditional local risk

Proposition 3.1 (Stochastic expansion of the conditional local risk at the time
tn). Assume notations and assumptions of Theorem 2.1. Denote F (n+1) : [0, tn+1] ×
Rd → R and G(n+1) : [0, tn+1]× Rd → Sd as

F (n+1)(t, ·) = f
(
t, ·, u(n+1)(t, ·), Dxu

(n+1)(t, ·), D2
xu

(n+1)(t, ·)
)
;

G(n+1)(t, ·) =
(
σᵀ(D2

xu
(n+1))σ

)
(t, ·).

(3.3)

For any tn and ξ ∈ Rd, let XεN
θ : [0, 1]×Ω→ Rd be the strong solution to the SDE (3.1)

such that XεN
0 = ξ and let EεNθ : [0, 1]× Ω→ R be the stochastic process defined by

EεNθ = u(n+1) (tn + θεN , X
εN
θ )− u(n+1)(tn, ξ)− 〈Dxu

(n+1)(tn, ξ), XεN
θ − ξ〉 (3.4)

so that
T εN (tn, ξ) = ε−2

N EB
[
`γ(EεN1 )

]
. (3.5)

The following local risk decomposition holds

T εN (tn, ξ) = EB
[∫ 1

0
`′′γ

(
Eθ
(
G(n+1)(tn, ξ), F (n+1)(tn, ξ)

)
+RεNθ (tn, ξ)

)
×Qθ

(
G(n+1)(tn, ξ), F (n+1)(tn, ξ)

)
dθ
]

+ Cn,N (ξ)ε1/2
N ,

where

Eθ(S, y) =
∫ θ

0
Bᵀ
θ′SdBθ′ − yθ, (3.6)

Qθ(S, y) = y2θ − y
∫ θ

0
Bᵀ
θ′SdBθ′ + ‖SBθ‖2/2, (3.7)

RεNθ (tn, ξ) = EεNθ /εN − Eθ
(
G(n+1)(tn, ξ), F (n+1)(tn, ξ)

)
, (3.8)

for some constant Cn,N (ξ) ∈ Cpol.

The proof of Proposition 3.1 is delicate. We postpone it to Subsection 3.5. In order
to perform a second - order stochastic expansion, we need that u(n+1) and Dxu

(n+1)

be in C1,2 to apply Ito’s formula. Additionally, we require σ, Dxu
(n+1), D2

xu
(n+1),

∂tDxu
(n+1) and D2

xDxu
(n+1) to have polynomial growth to obtain proper integrability

along the computations. Finally, we ask for σ and D2
xu

(n+1) to be in H1/2,1
loc,pol, which is

usefull at the stochastic expansion of the gradient Dxu
(n+1). All the above conditions

are satisfied thanks to our assumptions.
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3.3 Approximation of sensitivities in small time

First, notice that the above expansion of T εN (tn, ξ) depends on u(n+1), solution of the
PDE (1.5) on the subinterval [tn, tn+1], whose size goes to 0. Therefore, by invoking a
small - time approximation argument, we replace u(n+1) and its first - second derivatives
by its terminal value v(tn+1, ·) and its first - second derivatives. Notice that the reference
valuation v is independent of εN . This is the matter of following statement, proved in
Appendix 5.2.

Proposition 3.2 (Approximation of sensitivities in small time). Assume nota-
tions and assumptions of Theorem 2.1. Then, there exists some constant Cn,N (ξ) ∈ Cpol
such that ∣∣∣u(n+1)(tn, ξ)− v(tn+1, ξ)

∣∣∣ ≤ Cn,N (ξ)ε1/2
N , (3.9)∥∥∥Dxu

(n+1)(tn, ξ)−Dxv(tn+1, ξ)
∥∥∥ ≤ Cn,N (ξ)ε1/2

N , (3.10)∥∥∥D2
xu

(n+1)(tn, ξ)−D2
xv(tn+1, ξ)

∥∥∥ ≤ Cn,N (ξ)ε1/2
N . (3.11)

3.4 Aggregation of local risk and passage to the limit

We set

F (t, ξ) = f
(
t, ξ, v(t, ξ), Dxv(t, ξ), (D2

xv)(t, ξ)
)
∈ R,

G(t, ξ) = (σᵀ(D2
xv)σ)(t, ξ) ∈ Sd.

(3.12)

Replacing ξ by Xtn in the expansion of T εN (tn, ξ) in Proposition 3.1 leads to

T εN (tn, Xtn) =EB
[∫ 1

0
`′′γ

(
Eθ

(
G(n+1)(tn, Xtn), F (n+1)(tn, Xtn)

)
+RεNθ (tn, Xtn)

)
×Qθ

(
G(n+1)(tn, Xtn), F (n+1)(tn, Xtn)

)
dθ
]

+ Cn,N (Xtn)ε1/2
N ,

where Cn,N (Xtn) ∈ Cpol. By substituting u(n+1)(tn, ·) by its terminal value v(tn+1, ·) in
F (n+1)(tn, ·) and G(n+1)(tn, ·) (see (3.3)), we get F (tn+1, ·) and G(tn+1, ·) (see (3.12)).
Hence,

T εN (tn, Xtn) =EB
[∫ 1

0
`′′γ

(
Eθ (G(tn+1, Xtn), F (tn+1, Xtn)) + R̄εNθ (tn, Xtn)

)
×Qθ

(
G(tn+1, Xtn), F (tn+1, Xtn)

)
dθ
]

+ C̄εN (tn, Xtn) + Cn,N (Xtn)ε1/2
N ,

where

R̄εNθ (tn, ξ) :=Eθ(G(n+1)(tn, ξ), F (n+1)(tn, ξ))− Eθ(G(tn+1, ξ), F (tn+1, ξ)) +RεNθ (tn, ξ),

(3.13)

C̄εN (tn, ξ) :=EB
[∫ 1

0
`′′γ

(
Eθ(G(tn+1, ξ), F (tn+1, ξ)) + R̄εNθ (tn, ξ)

)
(3.14)

×
(
Qθ(G(n+1)(tn, ξ), F (n+1)(tn, ξ))−Qθ(G(tn+1, ξ), F (tn+1, ξ))

)
dθ
]
.
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In the sequel, we require estimates of R̄εNθ (tn, Xtn) and C̄εN (tn, Xtn), summarized in
the following lemma, proved later in Subsection 3.6.

Lemma 3.3. Under the assumptions of Theorem 2.1, for any p ≥ 1, there exists a
constant Kp such that

(a) E
[

sup0≤n≤N−1 supθ∈[0,1]

∣∣∣∣Eθ(G(n+1)(tn, Xtn), F (n+1)(tn, Xtn))

− Eθ(G(tn+1, Xtn), F (tn+1, Xtn))
∣∣∣∣p] ≤ Kpε

p/2
N ;

(b) sup0≤n≤N−1 E
∣∣C̄εN (tn, Xtn)

∣∣ ≤ K1ε
1/2
N ;

(c) sup0≤n≤N−1 supθ∈[0,1]
∣∣R̄εNθ (tn, Xtn)

∣∣ −→
N→∞

0, dPW ⊗ dPB - a.s.

From the definition of T εN in (3.2), we have ε−1
N Rn(γ) = T εN (tn, Xtn)εN . By summing

it for 0 ≤ n ≤ N − 1, we obtain

ε−1
N E

[N−1∑
n=0
Rn(γ)

]
= E

[N−1∑
n=0

T εN (tn, Xtn)εN
]
= E

[ ∫ T

0
T εN

(
ϕNt , XϕNt

)
dt
]

= EW⊗B
[ ∫ T

0

∫ 1

0
`′′γ

(
Eθ

(
G(ϕ̄Nt , XϕNt

), F (ϕ̄Nt , XϕNt
)
)

+ R̄εNθ (ϕNt , XϕNt
)
)

×Qθ
(
G(ϕ̄Nt , XϕNt

), F (ϕ̄Nt , XϕNt
)
)

dθ dt
]
+
N−1∑
n=0

E
[
C̄εN (tn, Xtn)εN + Cn,N (Xtn)ε3/2

N

]
.

(3.15)

The last sum goes to 0 as N → +∞, owing to Lemma 3.3 and Proposition 3.1. It
remains to determine the limit of the first term in (3.15). We achieve this result by
applying the dominated convergence theorem.

1. Because of σ, v,Dxv,D
2
xv, f ∈ H1/2,1

loc,pol (therefore, they are continuous in time and
space) and the path - continuity of X , we get dPW - a.s. for any t(

σᵀ(D2
xv)σ

)
(ϕ̄Nt , XϕNt

) −→
N→∞

(
σᵀ(D2

xv)σ
)

(t,Xt),

f
(
ϕ̄Nt , XϕNt

, v(ϕ̄Nt , XϕNt
), Dxv(ϕ̄Nt , XϕNt

), D2
xv(ϕ̄Nt , XϕNt

)
)

−→
N→∞

f
(
t,Xt, v(t,Xt), Dxv(t,Xt), D2

xv(t,Xt)
)
.

Hence, it holds dPW ⊗ dPB - a.s. for any θ, t

Eθ

(
G(ϕ̄Nt , XϕNt

), F (ϕ̄Nt , XϕNt
)
)
−→
N→∞

Eθ (Γ(t,Xt), F (t,Xt)) ,

Qθ

(
G(ϕ̄Nt , XϕNt

), F (ϕ̄Nt , XϕNt
)
)
−→
N→∞

Qθ (G(t,Xt), F (t,Xt)) ,

because Eθ and Qθ (see 3.6 - 3.7) are continuous in S, y, dPB ⊗ dθ - a.s. Also,
from the item (c) of Lemma 3.3, we have

sup
0≤n≤N−1

sup
θ∈[0,1]

∣∣R̄εNθ (tn, Xtn)
∣∣ −→
N→∞

0,

dPW ⊗ dPB - almost surely.
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2. Seeing that the second derivative `′′γ is discontinuous at 0 and the set

A := {(ω, t, θ) ∈ Ω× [0, T ]× [0, 1] : Eθ (G(t,Xt(ω)), F (t,Xt(ω))) (ω) = 0}
(3.16)

has measure zero (see Proposition 5.3 in Appendix), it holds

`′′γ

(
Eθ

(
G(ϕ̄Nt , XϕNt

), F (ϕ̄Nt , XϕNt
)
)

+ R̄εNθ (ϕ̄Nt , XϕNt
)
)

−→
N→∞

`′′γ (Eθ (G(t,Xt), F (t,Xt))) ,

dPW ⊗ dPB ⊗ dt⊗ dθ - almost surely.

3. Because of the boundedness of `′′γ and the polynomial growth of σ, v,Dxv,D
2
xv, we

have

|`′′γ
(
Eθ

(
Γ(ϕ̄Nt , XϕNt

), F (ϕ̄Nt , XϕNt
)
)

+ R̄εNθ (ϕ̄Nt , XϕNt
)
)
Qθ

(
G(ϕ̄Nt , XϕNt

), F (ϕ̄Nt , XϕNt
)
)
|

≤ C
(

1 + sup
t∈[0,T ]

|Xt|+ ‖Bθ‖+
∥∥∥∥∥
∫ θ

0
BθdBᵀ

θ

∥∥∥∥∥)q
for some positive constants C and q.

By the dominated convergence theorem, we conclude

EW⊗B
[∫ T

0

∫ 1

0
`′′γ

(
Eθ

(
Γ(ϕ̄Nt , XϕNt

), F (ϕ̄Nt , XϕNt
)
)

+ R̄εNθ (ϕ̄Nt , XϕNt
)
)

× Qθ

(
Γ(ϕ̄Nt , XϕNt

), F (ϕ̄Nt , XϕNt
)
)

dθ dt
]

−→
N→∞

EW⊗B
[∫ T

0

∫ 1

0
`′′γ (Eθ (Γ(t,Xt), F (t,Xt)))Qθ (Γ(t,Xt), F (t,Xt)) dθ dt

]
.

This completes the proof of Theorem 2.1.

3.5 Proof of Proposition 3.1

For the sake of conciseness, we set u = u(n+1). By substituting XεN
θ in (3.1) into EεNθ

in (3.4), we get

EεNθ = u (tn + θεN , X
εN
θ )− u(tn, ξ)− εN

∫ θ

0
Dxu(tn, ξ)µ (tn + θ′εN , X

εN
θ′ ) dθ′

− ε1/2
N

∫ θ

0
Dxu(tn, ξ)σ (tn + θ′εN , X

εN
θ′ ) dBθ′ , (3.17)

where Dxu(·, ·) is a row vector.
In the proof, we use the Ito - Tanaka formula to `γ (EεNθ ) between θ = 0 and θ = 1 and
we perform some Taylor - Ito expansions in terms of εN . Because u, ∂tu,Dxu,D

2
xu ∈

H1/2,1
loc,pol, then u ∈ C1,2([tn, tn+1]× Rd,R). Applying Ito’s formula to u (tn + θεN , X

εN
θ )

yields

u(tn + θεN , X
εN
θ )− u(tn, ξ) = ε

1/2
N

∫ θ

0
(Dxuσ) (tn + θ′εN , X

εN
θ′ ) dBθ′

+ εN

∫ θ

0
(Ltn+θ′εNu) (tn + θ′εN , X

εN
θ′ ) dθ′
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+ εN

∫ θ

0
((Dxu)µ) (tn + θ′εN , X

εN
θ′ ) dθ′. (3.18)

Here, we denote (∆Dxu)(t, ζ) = Dxu(t, ζ)−Dxu(tn, ξ) for any t ∈ [tn, tn+1] and ζ ∈ Rd.
Replacing (3.18) in (3.17) leads to

EεNθ = ε
1/2
N

∫ θ

0
((∆Dxu)σ) (tn + θ′εN , X

εN
θ′ ) dBθ′

+ εN

∫ θ

0
(Ltn+θ′εNu) (tn + θ′εN , X

εN
θ′ ) dθ′

+ εN

∫ θ

0
((∆Dxu)µ) (tn + θ′εN , X

εN
θ′ ) dθ′. (3.19)

Use that u solves the PDE (1.5) to simplify the second term above. Then, we apply the
Ito - Tanaka formula to the convex function `γ (see Theorem 1.5 and Corollary 1.6 in
[18, Chapter VI]) composed with the process EεNθ between θ = 0 and θ = 1. Because
`′γ(y) = `′′γ(y)y for all y ∈ R, we get

`γ(EεN1 ) = −εN
∫ 1

0
`′′γ (EεNθ ) EεNθ F (n+1) (tn + θεN , X

εN
θ ) dθ

+ ε
1/2
N

∫ 1

0
`′′γ (EεNθ ) EεNθ ((∆Dxu)σ) (tn + θεN , X

εN
θ ) dBθ

+ εN

∫ 1

0
`′′γ (EεNθ ) EεNθ ((∆Dxu)µ) (tn + θεN , X

εN
θ ) dθ

+ 1
2εN

∫ 1

0
`′′γ (EεNθ ) ‖((∆Dxu)σ) (tn + θεN , X

εN
θ )‖2dθ.

Considering T εN (tn, ξ) in (3.5), taking the expectation of the above expression and
dividing by ε2

N gives

T εN (tn, ξ) =: T εN1 (tn, ξ) + T εN2 (tn, ξ) + T εN3 (tn, ξ), (3.20)

where

T εN1 (tn, ξ) := −ε−1
N EB

[∫ 1

0
`′′γ (EεNθ ) EεNθ F (n+1) (tn + θεN , X

εN
θ ) dθ

]
, (3.21)

T εN2 (tn, ξ) := 1
2ε
−1
N EB

[∫ 1

0
`′′γ (EεNθ ) ‖((∆Dxu)σ) (tn + θεN , X

εN
θ )‖2dθ

]
, (3.22)

T εN3 (tn, ξ) := ε−1
N EB

[∫ 1

0
`′′γ (EεNθ ) EεNθ ((∆Dxu)µ) (tn + θεN , X

εN
θ ) dθ

]
. (3.23)

Here we have used that the stochastic integral in `γ(EεN1 ) has expectation zero, following
directly from E

∫ 1
0 |E

εN
θ |4dθ < +∞ and from the polynomial growth of σ and Dxu

(because σ,Dxu ∈ H1/2,1
loc,pol). Now we analyze the expansion of EεNθ and then apply it to

T εNi (tn, ξ) for i = 1, 2, 3.

1) Stochastic Taylor expansion of ((∆Dxu)σ) (tn + θεN , X
εN
θ ) and EεNθ . We ap-

proximate ∆Dxu up to order ε1/2
N , by setting

(∆Dxu) (tn + θεN , X
εN
θ ) = ε

1/2
N Bᵀ

θ

(
σᵀ
(
D2
xu
))

(tn, ξ) + rεNθ , (3.24)

where ∆Dxu and rεNθ are row vectors.
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Lemma 3.4. Let p ≥ 2. Under the assumptions of Theorem 2.1, it holds

(a) sup0≤n≤N−1 supθ∈[0,1] EB‖r
εN
θ ‖

p ≤ Cn,N (ξ)εpN ,

(b) sup0≤n≤N−1 supθ∈[0,1] EB‖(∆Dxu) (tn + θεN , X
εN
θ )‖p ≤ Cn,N (ξ)εp/2N ,

for some constant Cn,N (ξ) ∈ Cpol.

Proof of Lemma 3.4. (b) This item follows directly from Lemma 5.1 and from item (a),
using standard computations. (a) Because Dxu, ∂tDxu,D

2
xu,D

2
xDxu ∈ H1/2,1

loc,pol, then
Dxu ∈ C1,2([tn, tn+1]× Rd). By applying Ito’s formula to Dxu (tn + θεN , X

εN
θ ), we get

rεNθ = εN

∫ θ

0

(
Ltn+θ′εNDxu+ µᵀ(D2

xu)
)

(tn + θ′εN , X
εN
θ′ ) dθ′

+ ε
1/2
N

∫ θ

0
dBᵀ

θ′

((
σᵀ
(
D2
xu
))

(tn + θ′εN , X
εN
θ′ )−

(
σᵀ
(
D2
xu
))

(tn, ξ)
)
.

Owing to the Hölder inequality, the BDG inequality and the polynomial growth condi-
tions on the functions (because σ,Dxu, ∂tDxu,D

2
xu,D

2
xDxu ∈ H1/2,1

loc,pol), we estimate

EB‖rεNθ ‖
p ≤ 2p−1εpN

∫ θ

0
EB
∥∥(Ltn+θ′εNDxu+ µᵀ(D2

xu)
)

(tn + θ′εN , X
εN
θ′ )
∥∥pdθ′θ

+ 2p−1CBDGε
p/2
N

∫ θ

0
EB
∥∥(σᵀ

(
D2
xu
))

(tn + θ′εN , X
εN
θ′ )−

(
σᵀ
(
D2
xu
))

(tn, ξ)
∥∥pdθ′.

Using the growth conditions from the assumptions and applying bounds (5.1) in Lemma 5.1
to σᵀ(D2

xu) ∈ H1/2,1
loc,pol (because σ and D2

xu are in H1/2,1
loc,pol), we obtain the announced

estimate.

By replacing the decomposition (3.24) into the expression of EεNθ given in (3.19), we
obtain

EεNθ = εNEθ

(
G(n+1)(tn, ξ), F (n+1)(tn, ξ)

)
+ εNR

εN
θ (tn, ξ), (3.25)

where

Eθ

(
G(n+1)(tn, ξ), F (n+1)(tn, ξ)

)
=
∫ θ

0
Bᵀ
θ′G

(n+1)(tn, ξ)dBθ′−F (n+1)(tn, ξ)θ, (3.26)

and

RεNθ (tn, ξ) = −
∫ θ

0

(
F (n+1)(tn + θ′εN , X

εN
θ′ )− F (n+1)(tn, ξ)

)
dθ′

+
∫ θ

0
Bᵀ
θ′

(
σᵀ
(
D2
xu
))

(tn, ξ) (σ (tn + θ′εN , X
εN
θ′ )− σ(tn, ξ)) dBθ′

+ ε
−1/2
N

∫ θ

0
rεNθ′ σ (tn + θ′εN , X

εN
θ′ ) dBθ′

+ ε
1/2
N

∫ θ

0
Bᵀ
θ′

(
σᵀ
(
D2
xu
))

(tn, ξ)µ (tn + θ′εN , X
εN
θ′ ) dθ′

+
∫ θ

0
rεNθ′ µ (tn + θ′εN , X

εN
θ′ ) dθ′. (3.27)

Lemma 3.5. Under the assumptions of Theorem 2.1, it holds
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(a) supθ∈[0,1] EB
∣∣Eθ (G(n+1)(tn, ξ), F (n+1)(tn, ξ)

)∣∣2 ≤ Cn,N (ξ);

(b) supθ∈[0,1] EB |R
εN
θ (tn, ξ)|2 ≤ Cn,N (ξ)εN ,

for some constant Cn,N (ξ) ∈ Cpol.

Proof of Lemma 3.5. (a) From (3.26) we get

EB
∣∣∣Eθ ((σᵀ(D2

xu)σ)(tn, ξ), F (n+1)(tn, ξ)
)∣∣∣2

≤ 2|F (n+1)(tn, ξ)|2θ2 + 2EB
∣∣∣∣∣
∫ θ

0
Bᵀ
θ′

(
(σᵀ(D2

xu)σ)
)

(tn, ξ)dBθ′
∣∣∣∣∣
2

,

and we conclude owing to the Ito isometry and the growth conditions on the coefficients
(because σ, u,Dxu,D

2
xu, f ∈ H1/2,1

loc,pol).
(b) From (3.27) we estimate

EB |RεNθ (tn, ξ)|2 ≤ 5
∫ 1

0
EB
∣∣∣F (n+1) (tn + θ′εN , X

εN
θ′ )− F (n+1)(tn, ξ)

∣∣∣2 dθ′

+ 5EB
∫ 1

0

∥∥Bᵀ
θ′

(
σᵀ
(
D2
xu
))

(tn, ξ) (σ (tn + θ′εN , X
εN
θ′ )− σ(tn, ξ))

∥∥2
2 dθ′

+ 5ε−1
N EB

∫ 1

0
‖rεNθ′ σ (tn + θ′εN , X

εN
θ′ )‖22 dθ′

+ 5εN
∫ 1

0
EB
∣∣Bᵀ

θ′

(
σᵀ
(
D2
xu
))

(tn, ξ)µ (tn + θ′εN , X
εN
θ′ )
∣∣2 dθ′

+ 5
∫ 1

0
EB |rεNθ′ µ (tn + θ′εN , X

εN
θ′ )|2 dθ′,

for all ξ ∈ Rd, n ∈ {0, . . . , N − 1} and θ ∈ [0, 1]. Now we conclude to the inequality (b)
by using that f , u, Dxu, D2

xu, σ are in H1/2,1
loc,pol, and by applying Lemmas 5.1 and 3.4.

2) Expansion of T εN1 (tn, ξ) and T εN3 (tn, ξ). From `′′γ(y) = `′′γ (y/εN ), for all y ∈ R,
and the expansion of EεNθ in (3.25), we get

`′′γ (EεNθ ) = `′′γ

(
Eθ

(
G(n+1)(tn, ξ), F (n+1)(tn, ξ)

)
+RεNθ (tn, ξ)

)
. (3.28)

By combining this with (3.21) and (3.25), we obtain

T εN1 (tn, ξ) = −EB
[ ∫ 1

0
`′′γ

(
Eθ

(
G(n+1)(tn, ξ), F (n+1)(tn, ξ)

)
+RεNθ (tn, ξ)

)
× F (tn, ξ)Eθ

(
G(n+1)(tn, ξ), F (n+1)(tn, ξ)

)
dθ
]

+ CεN1 (tn, ξ),

where

CεN1 (tn, ξ) := −EB
[ ∫ 1

0
`′′γ

(
Eθ

(
G(n+1)(tn, ξ), F (n+1)(tn, ξ)

)
+RεNθ (tn, ξ)

)
×RεNθ (tn, ξ)F (n+1) (tn + θεN , X

εN
θ ) dθ

]
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−EB
[ ∫ 1

0
`′′γ (EεNθ )

(
F (n+1) (tn + θεN , X

εN
θ )− F (n+1)(tn, ξ)

)
× Eθ

(
G(n+1)(tn, ξ), F (n+1)(tn, ξ)

)
dθ
]
. (3.29)

The estimates of CεN1 (tn, ξ) and T εN3 (tn, ξ) are summarized in the following lemma.

Lemma 3.6. Under the assumptions of Theorem 2.1, it holds

(a) EB |CεN1 (tn, ξ)| ≤ Cn,N (ξ)ε1/2
N ,

(b) EB |T εN3 (tn, ξ)| ≤ Cn,N (ξ)ε1/2
N ,

for some constant Cn,N (ξ) ∈ Cpol.

Proof of Lemma 3.6. (a) From (3.29), it readily follows that

|CεN1 (tn, ξ)| ≤ KEB
[∫ 1

0

∣∣∣F (n+1) (tn + θεN , X
εN
θ )
∣∣∣ |RεNθ (tn, ξ)|dθ

]
+KEB

[∫ 1

0

∣∣∣F (n+1) (tn + θεN , X
εN
θ )− F (n+1)(tn, ξ)

∣∣∣ ∣∣∣Eθ (G(n+1)(tn, ξ), F (n+1)(tn, ξ)
)∣∣∣ dθ]

where K is an upper bound of `′′γ . For the first term above, use that F (n+1) has
polynomial growth in its arguments (because u(n+1), Dxu

(n+1), D2
xu

(n+1), f ∈ H1/2,1
loc,pol).

and Lemma 3.5(b). For the second term, apply the Cauchy - Schwarz with Lemmas 5.1
and 3.5(a). It yields

|CεN1 (tn, ξ)| ≤ Cn,N (ξ)ε1/2
N

as announced.
(b) Similarly, from (3.23) we write

|T εN3 (tn, ξ)|

≤ K
∫ 1

0
EB
[∣∣∣Eθ (G(n+1)(tn, ξ), F (n+1)(tn, ξ)

)
+RεNθ (tn, ξ)

∣∣∣ |((∆Dxu)µ) (tn + θεN , X
εN
θ )|

]
dθ

≤ K
∫ 1

0

√
EB
[ ∣∣Eθ (G(n+1)(tn, ξ), F (n+1)(tn, ξ)

)
+RεNθ (tn, ξ)

∣∣2 ]

×

√
EB
[
|((∆Dxu)µ) (tn + θεN , X

εN
θ )|2

]
dθ.

It is now straightforward to conclude that the above is bounded by Cn,N (ξ)ε1/2
N , using

Lemmas 5.1, 3.4 and 3.5.

3) Expansion of CεN2 (tn, ξ). Using the expansion of ∆Dxu in (3.24), we obtain

‖((∆Dxu)σ) (tn + θεN , X
εN
θ )‖2

= εN
∥∥Bᵀ

θ

(
σᵀ(D2

xu)
)

(tn, ξ)σ (tn + θεN , X
εN
θ )
∥∥2 + ‖rεNθ σ (tn + θεN , X

εN
θ )‖2

+ 2ε1/2
N

(
Bᵀ
θ

(
σᵀ(D2

xu)
)

(tn, ξ)σ (tn + θεN , X
εN
θ )
)
· (rεNθ σ (tn + θεN , X

εN
θ )) .
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Replacing the identity σ(t, ζ) = ∆σ(t, ζ) + σ(tn, ξ) into the first term of the previous
equation, we get

‖((∆Dxu)σ) (tn + θεN , X
εN
θ )‖2 = εN

∥∥Bᵀ
θ

(
σᵀ(D2

xu)σ
)

(tn, ξ)
∥∥2 + cεNθ (tn, ξ), (3.30)

where

cεNθ (tn, ξ)

= εN
∥∥Bᵀ

θ

(
σᵀ(D2

xu)
)

(tn, ξ)∆σ (tn + θεN , X
εN
θ )
∥∥2 + ‖rεNθ σ (tn + θεN , X

εN
θ )‖2

+ 2εN
(
Bᵀ
θ

(
σᵀ(D2

xu)
)

(tn, ξ)∆σ (tn + θεN , X
εN
θ )
)
·
(
Bᵀ
θ

(
σᵀ(D2

xu)σ
)

(tn, ξ)
)

+ 2ε1/2
N

(
Bᵀ
θ

(
σᵀ(D2

xu)
)

(tn, ξ)σ (tn + θεN , X
εN
θ )
)
· (rεNθ σ (tn + θεN , X

εN
θ )) . (3.31)

From (3.30) and (3.28), the expression of T εN2 in (3.22) becomes

T εN2 (tn, ξ)

= 1
2E

B

[∫ 1

0
`′′γ

(
Eθ

(
G(n+1)(tn, ξ), F (n+1)(tn, ξ)

)
+RεNθ (tn, ξ)

)∥∥Bᵀ
θ

(
σᵀ(D2

xu)σ
)

(tn, ξ)
∥∥2dθ

]
+ CεN2 (tn, ξ),

where

CεN2 (tn, ξ) := 1
2E

B

[∫ 1

0
`′′γ

(
Eθ

(
G(n+1)(tn, ξ), F (n+1)(tn, ξ)

)
+RεNθ (tn, ξ)

)
ε−1
N cεNθ (tn, ξ)dθ

]
.

(3.32)
The estimate of CεN2 (tn, ξ) is summarized in the following lemma.

Lemma 3.7. Under the assumptions of Theorem 2.1, it holds

|CεN2 (tn, ξ)| ≤ Cn,N (ξ)ε1/2
N ,

for some constant Cn,N (ξ) ∈ Cpol.

Proof of Lemma 3.7. From the expression cεNθ (tn, ξ) in (3.31), we write

EB |cεNθ (tn, ξ)| ≤ εNEB
∥∥Bᵀ

θ

(
σᵀ(D2

xu)
)

(tn, ξ)∆σ (tn + θεN , X
εN
θ )
∥∥2

+ EB‖rεNθ σ (tn + θεN , X
εN
θ )‖2

+ 2εN
√
EB‖Bᵀ

θ (σᵀ(D2
xu)) (tn, ξ)∆σ (tn + θεN , X

εN
θ )‖2

×
√

EB‖Bᵀ
θ (σᵀ(D2

xu)σ) (tn, ξ)‖2

+ 2ε1/2
N

√
EB‖Bᵀ

θ (σᵀ(D2
xu)) (tn, ξ)σ (tn + θεN , X

εN
θ )‖2

×
√

EB‖rεNθ σ (tn + θεN , X
εN
θ )‖2

≤ Cn,N (ξ)ε3/2
N .

Again we have used the polynomial growth condition on σ,D2
xu and the local regularity

condition on σ ∈ H1/2,1
loc,pol with Lemma 5.1, and Lemma 3.4 - (a). Consequently and in

view of the definition (3.32) of CεN2 (tn, ξ), we obtain the estimate

|CεN2 (tn, ξ)| ≤
1
2 |`
′′
γ |∞ ε−1

N sup
θ∈[0,1]

EB |cεNθ (tn, ξ)| ,

which leads to the announced result.
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4) Expansion of T εN (tn, ξ). From (3.20) and the previous expansions of T εNi (tn, ξ)
for i = 1, 2, 3, we deduce

T εN (tn, ξ) = EB
[ ∫ 1

0
`′′γ

(
Eθ

(
G(n+1)(tn, ξ), F (n+1)(tn, ξ)

)
+RεNθ (tn, ξ)

)
×Qθ

(
G(n+1)(tn, ξ), F (n+1)(tn, ξ)

)
dθ
]

+ CεN1 (tn, ξ) + CεN2 (tn, ξ) + T εN3 (tn, ξ),

where Qθ is defined in (3.7). Since CεN1 (tn, ξ), CεN2 (tn, ξ) and T εN3 (tn, ξ) satisfy ε1/2
N -

bounds, we get the result of Proposition 3.1.

3.6 Proof of Lemma 3.3

(a) From the definition of Eθ in (3.6), it follows that∣∣∣Eθ (G(n+1)(tn, Xtn), F (n+1)(tn, Xtn)
)
− Eθ (Γ(tn+1, Xtn), F (tn+1, Xtn))

∣∣∣
≤
∣∣∣f(tn, Xtn , u

(n+1)(tn, Xtn), Dxu
(n+1)(tn, Xtn), D2

xu
(n+1)(tn, Xtn))

− f(tn+1, Xtn , v(tn+1, Xtn), Dxv(tn+1, Xtn), D2
xv(tn+1, Xtn))

∣∣∣
+
∥∥∥(σᵀ

(
D2
xu

(n+1)
)
σ)(tn, Xtn)− (σᵀ

(
D2
xv
)
σ)(tn+1, Xtn)

∥∥∥∥∥∥∥∥
∫ θ

0
Bθ′dBᵀ

θ′

∥∥∥∥∥
≤ Cn,N (Xtn)ε1/2

N

(
1 +

∥∥∥∥∥
∫ θ

0
Bθ′dBᵀ

θ′

∥∥∥∥∥
)
,

for some constant Cn,N (Xtn) ∈ Cpol, where we have used Proposition 3.2 and the
assumptions on coefficients, prices and greeks. Owing to the Burkholder - Davis -
Gundy (BDG) inequalities, we conclude the proof of (a).
(b) From C̄εN (tn, ξ) in (3.14) we get

E
∣∣C̄εN (tn, Xtn)

∣∣ ≤
|`′′γ |∞

∫ 1

0
E
∣∣∣Qθ (G(n+1)(tn, Xtn), F (n+1)(tn, Xtn)

)
−Qθ (Γ(tn+1, Xtn), F (tn+1, Xtn))

∣∣∣dθ.
Considering the expression of Qθ in (3.7), we are able to apply the same arguments as
for (a). Further details are left to the reader. We are done with the estimate (b).
(c) Let p ≥ 1 and set ZN := sup0≤n≤N−1 supθ∈[0,1]

∣∣R̄εNθ (tn, Xtn)
∣∣p. From the definition

(3.13) of R̄εNθ (tn, ξ) we write

E[ZN ] ≤ 2p−1E

[
sup

0≤n≤N−1
sup
θ∈[0,1]

∣∣∣Eθ(G(n+1)(tn, Xtn), F (n+1)(tn, Xtn)
)

− Eθ
(

Γ(tn+1, Xtn), F (tn+1, Xtn)
)∣∣∣p]

+ 2p−1E

[
sup

0≤n≤N−1
sup
θ∈[0,1]

∣∣∣RεNθ (tn, Xtn)
∣∣∣p] ≤ KpNε

p/2
N
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owing to (a) and Lemma 3.8 stated below. Last, apply Lemma 5.2 to the above ZN
with p > 4: we are done.

In the proof, we have used the following result, useful to justify the a.s. convergence to
0 of remainder terms. We postpone its proof to Appendix 5.1.

Lemma 3.8. Let RεNθ (tn, ξ) be given by (3.8) and p ≥ 1. Under the assumptions of
Theorem 2.1, there exists a finite positive constant Kp depending on the coefficients µ,
σ, f , u(n+1) and its derivatives such that

E

[
sup

0≤n≤N−1
sup
θ∈[0,1]

|RεNθ (tn, Xtn)|p
]
≤ KpNε

p/2
N .

Proof. We claim the following upper bound holds

EB
[

sup
θ∈[0,1]

|RεNθ (tn, ξ)|p2

]
≤ Cn,N (ξ)εpN (3.33)

for some constant Cn,N (ξ) ∈ Cpol. With this control at hand, we complete the proof by
using the rough inequality

E

[
sup

0≤n≤N−1
sup
θ∈[0,1]

|RεNθ (tn, Xtn)|p
]
≤
N−1∑
n=0

E

[
sup
θ∈[0,1]

|RεNθ (tn, Xtn)|p
]
.

So, it is enough to show (3.33). Regarding the control with RεNθ (tn, ξ), we follow the
proof of Lemma 3.5 item (b). The adaptation is obvious since instead of taking p = 2,
we take p ≥ 1. Then we handle the supremum over θ inside the expectation using BDG
inequalities. Other arguments are unchanged, leading to the announced estimate. We
leave to the reader the details.

4 Numerical experiments

In this section, we compute a numerical approximation of v∗ in (2.12), solution to the f -
PDE in (1.5) using the optimal kernel f∗ defined in (2.10). In Subsection 2.4, we obtain
a quasi-explicit formulation for the optimal kernel f∗γ (see (2.15)) in the one-dimensional
case. Therefore, we only perform numerical experiments in dimension d = 1 with the
risk parameter γ ∈ {0.0, 0.1, 0.2, 0.3}. First, in Section 4.1, we present the numerical
solution for a set of European options. Then, in Section 4.2, we compute the asymptotic
risk Rγ(v∗, f) for different kernels f ∈ {f∗0 , f∗0.1, f∗0.2, f∗0.3} confirming the optimality of
f∗γ . Finally, in Section 4.3, we compare numerically the solution to the f -PDE with the
solution to the minimization problem (1.3). We aim to check the conjecture whether
one can interchange the limit in N and the minimization over strategies in our setting.
Alternatively, we verify the solution to the minimization problem in discrete time (see
(1.3)) corresponds, as N large, to the solution to the nonlinear f∗-PDE (1.5).

4.1 The f ∗-PDE valuation for different options

Here we show the numerical solution to (1.5) for different option payoffs under the
assumption that the underlying process X satisfies the SDE (2.1) with σ(t, x) = σx. We
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consider the value function U(t, x) as the solution to the following f -PDE valuation (in
a forward form)

∂U

∂t
(t, x) = α(x)∂2

xU(t, x) + f
(
2α(x)∂2

xU(t, x)
)
, (t, x) ∈ (0, T ]× R, (4.1)

where α(x) = 1
2σ

2x2 and f : R → R is a real-valued function to be chosen. Seeing
that (4.1) has a second-order partial differential in space and first order in time, we
require for a numerical resolution one initial and two boundary conditions. Also, the
payoff of European options with maturity T , denoted by h(x), will be used as initial
time condition. We have chosen the following options:

(i) call option with payoff h(x) = (x−K0)+ and put option with payoff h(x) =
(K0 − x)+, where x 7→ x+ = max(x, 0) and K0 is the strike price;

(ii) asset-or-nothing call option with payoff h(x) = xIx−K0>0 and asset-or-nothing put
option with payoff h(x) = xIx−K0<0, where K0 is the strike price;

(iii) bull spread option with payoff h(x) = (x−K1)+ − (x−K2)+ and bear spread
option with payoff h(x) = (K2 − x)+ − (K1 − x)+, where K1,K2 are strike prices
with K2 > K1;

We examine the asset-or-nothing options because of their discontinuous payoff. We
analyze the spread options because of the change of convexity. We are aware these payoffs
do not satisfy the assumptions of Theorem 2.1, but we believe that these hypotheses are
only sufficient and the previous asymptotic analysis can also be applied to those payoffs.
In the following numerical examples, we consider:

Set Strike Volatility Maturity
A (vanilla and digital) K0 = 100 σ = 0.3 T = 1
B (spread) (K1,K2) = (90, 110) σ = 0.3 T = 1

Space discretization. Here, we detail our numerical scheme. We look for a second-
order accurate solution to the PDE in (4.1) on a finite domain L = [0, xmax]. Let
I ∈ N. Therefore, we equally discretize L in I+1 points {x0, x1, . . . , xI−1, xI} such that
∆x = xmax/I and xi = i∆x for each 0 ≤ i ≤ I. Assuming that U is smooth enough, we
get the second-order approximation of the second derivative of U

Ui+1 − 2Ui + Ui−1

∆x2 = ∂2
xU
∣∣
xi

+ O(∆x2),

for every 1 ≤ i ≤ I − 1, with Ui denoting U(xi). Thanks to the second-order approxi-
mation, we obtain a semi-discretization from (4.1):

∂tUi = αi
Ui+1 − 2Ui + Ui−1

∆x2 + f

(
2αi

Ui+1 − 2Ui + Ui−1

∆x2

)
, (4.2)

for every 1 ≤ i ≤ I − 1, where the factor αi is α(x) evaluated in each xi. Assuming
that f in (4.1) is Lipschitz continuous, the system of equations (4.2) is a second-order
approximation of the PDE (4.1) and can be viewed in matrix form as

dU
dt = AU + f(2AU),
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where A is the coefficient matrix and U the discrete solution. Besides the system in
(4.2), U satisfies U0 = bmin and Un = bmax, where bmin and bmax represent a Dirichlet-
type boundary condition imposed to the numerical solution. Therefore, the matrix A is
of form

A00 = 0, Aii−1 = αi/∆x2, Aii = −2αi/∆x2, Aii+1 = αi/∆x2, AII = 0.

After the space discretization, it remains a system of ordinary differential equations
dU
dt = AU + F, U(0) = h, F := f(2AU).

Time discretization. Now we apply a second-order method in time. Let J ∈ N.
Divide the time interval [0, T ] in J intervals with a constant time step ∆t = T/J .
Denote Uj (resp. Fj) as the vector U (resp. F) evaluated at t = j∆t. Due to the
nonlinearity of F regarding U, we will use Adams-Moulton (AM) methods with Adams-
Bashforth (AB) methods to construct a Predictor-Corrector algorithm with AM and AB
of the same order. Here we apply the second-order Adams-Bashforth (AB2) method to
predict Fj+1 and use F̄j+1 within the second-order Adams-Moulton (AM2) method:

1. We predict (Uj+1,Fj+1) with AB2 which give us:

F̄j+1 = f
(
2AŪj+1) , Ūj+1 = Uj + ∆t

[
3
2
(
AUj + Fj

)
− 1

2
(
AUj−1 + Fj−1)] .

2. We correct (Uj+1,Fj+1) with AM2 which gives us:

Fj+1 = f
(
2AUj+1) , Uj+1 = Uj + ∆t

[
1
2
(
AUj+1 + F̄j+1)+ 1

2
(
AUj + Fj

)]
.

Here, f is computed as the optimal kernel f∗γ given in (2.15). Further, in Table 1,
we give the constants c∗1 and c∗2 computed using a root finding algorithm. Since the
algorithm looks two steps back, we will need some initialization steps. Therefore we use
the AB1 (Forward Euler) and the AM1 (Backward Euler) method for the prediction
and correction part, respectively,

Ū1 = U0 + ∆t
(
AU0 + F0) , F0 = f

(
2U0) ,

U1 = U0 + ∆t
(
AU1 + F̄1) , F̄1 = f

(
2Ū1) .

Initial boundary conditions. Regarding the boundary conditions, we have stipu-
lated a space domain L = [0, xmax], where xmax is supposed to be large enough. Then we
use Dirichlet boundary conditions U(t, 0) = bmin(t) and U(t, xmax) = bmax(t) for any t in
[0, T ]. We set the left boundary bmin(t) = h(0) and the right boundary bmax(t) = h(xmax)
for any t in [0, T ]. Regarding the numerical solution, we fix xmax = 400, I = 200 and
J = 200.
In Figure 4, we show the vanilla option value plotted for different risk parameters γ.
We depict analogous plot for digital and spread options in Figure 5 and 6, respectively.
We remark the numerical solutions are increasing in function of γ. Intuitively, whenever
the seller’s risk aversion increases, it will be more reasonable to asking him for a higher
option price. According to Proposition 2.3, we have y 7→ f∗γ (y) is nonnegative for all
γ ∈ (0, 1). Therefore, the nonlinear source of PDE (4.1) is nonnegative whatever the
sign of second derivatives. Our risk-aversion valuation adds a risk premium to the risk-
neutral one whenever the underlying price varies too quickly, i.e., proportionally to the
Greek Gamma.
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(b) Call hedge function ∂xU
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(c) Put value function U
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(d) Put hedge function ∂xU

Figure 4: Vanilla options: numerical approximation of f∗-PDE solution U at final time
for different γ.

4.2 The asymptotic risk Rγ(v, f) for different kernel f

Here we will test the asymptotic risk Rγ(v, f) (see in (2.6)) for different kernel f given
a reference valuation v. Consider v∗γ(t, ·) = U(T − t, ·), where U is the solution to PDE
(4.1) (in forward form) using the optimal kernel f∗γ given by Proposition 2.3. Then we
confirm numerically the optimality of f∗γ for the reference valuation v∗γ by computing
Rγ(v∗γ , f∗γ′) for a different γ′. To achieve that, we approximate Rγ(v∗γ , f∗γ′) by forward
Monte Carlo simulations of X. In addition, we use the numerical PDE solution to
compute the partial derivatives of v∗γ . We denote its estimate by R̂N,M (γ, γ′), where N
is the number of time steps and M is the number of paths {Xtn}Nn=0.
Set σ = 0.3, N = 20, M = 5× 105, and X0 ∈ {90, 110}. The number of time steps used
in the PDE resolution between each time step of the MC algorithm is 50. We study the
following options:

(i) call option with K0 = 100 and T = 1;

(ii) bear option with K1 = 80, K2 = 120 and T = 1.

Let γ ∈ [0, 1) and X0 ∈ R+ fixed. Thanks to Theorem 2.1 and Proposition 2.2, we
expect the minimum of R̂N,M (γ′, γ) in γ′ is attained at γ′ = γ. In Table 2, we compute
the numerical approximation R̂N,M (γ, γ′) for (γ, γ′) ∈ {0.0, 0.1, 0.2, 0.3}2 to verify this
claim.
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(a) Asset-or-nothing call value function U
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(b) Asset-or-nothing call hedge function
∂xU
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(c) Asset-or-nothing put value function U
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(d) Asset-or-nothing put hedge function
∂xU

Figure 5: Digital options: numerical approximation of f∗-PDE solution U at final time
for different γ.

γ γ′ X0 = 90 X0 = 110
0 0 41.20±0.08 47.92±0.08
0 0.1 42.09±0.08 48.96±0.08
0 0.2 45.41±0.09 52.82±0.09
0 0.3 52.49±0.10 61.05±0.10
0.1 0 41.26±0.08 48.03±0.08
0.1 0.1 40.53±0.08 47.17±0.08
0.1 0.2 41.52±0.08 48.32±0.08
0.1 0.3 45.20±0.09 52.61±0.08
0.2 0 41.46±0.08 48.29±0.07
0.2 0.1 39.46±0.07 45.97±0.07
0.2 0.2 38.66±0.07 45.03±0.07
0.2 0.3 39.75±0.07 46.30±0.07
0.3 0 41.61±0.07 48.51±0.07
0.3 0.1 38.66±0.07 45.08±0.07
0.3 0.2 36.51±0.07 42.57±0.06
0.3 0.3 35.65±0.06 41.56±0.06

(a) R̂N,M for a call option with K0 = 100.

γ γ′ X0 = 90 X0 = 110
0 0 41.20±0.08 47.92±0.08
0 0.1 42.09±0.08 48.96±0.08
0 0.2 45.41±0.09 52.82±0.09
0 0.3 52.49±0.10 61.05±0.10
0.1 0 41.26±0.08 48.03±0.08
0.1 0.1 40.53±0.08 47.17±0.08
0.1 0.2 41.52±0.08 48.32±0.08
0.1 0.3 45.20±0.09 52.61±0.08
0.2 0 41.46±0.08 48.29±0.07
0.2 0.1 39.46±0.07 45.97±0.07
0.2 0.2 38.66±0.07 45.03±0.07
0.2 0.3 39.75±0.07 46.30±0.07
0.3 0 41.61±0.07 48.51±0.07
0.3 0.1 38.66±0.07 45.08±0.07
0.3 0.2 36.51±0.07 42.57±0.06
0.3 0.3 35.65±0.06 41.56±0.06

(b) R̂N,M for a bear option with K1 = 80
and K2 = 120.

Table 2: Asymptotic risk estimate R̂N,M for N = 20 and M = 5× 105.
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(a) Bull spread value function U
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(b) Bull spread hedge function ∂xU
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(c) Bear spread value function U
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(d) Bear spread hedge function ∂xU

Figure 6: Spread options: numerical approximation of f∗-PDE solution U at final time
for different γ.

4.3 The f ∗-PDE valuation/hedging rule and the discrete time
problem solution

Let Uγ be the solution to the forward f∗γ -PDE (4.1). Here, we compare the f∗γ -PDE
valuation/hedging rule ϕ?γ(t, ·) = (Uγ(T − t, ·), ∂xUγ(T − t, ·)) for t ∈ [0, T ] and the
discrete time problem solution ϕNtn(t, ·) = (V Nγ (tn, ·), δNγ (tn, ·)) for 0 ≤ n ≤ N , where N
is the number of hedging times. We approximate ϕNγ by ϕN,Mγ by using a Regression
Monte Carlo (RMC) algorithm, where M is the number of Monte Carlo paths.

RMC Algorithm. Here we present our RMC algorithm, which is a variation of the
Hedged Monte Carlo algorithm (proposed in [17]) with a fixed point stage. We determine
the option value by working step by step from T = N∆t to the present t = 0, where ∆t
is the time interval. We denote the underlying asset price X at time tn = n∆t by Xn

and the option value Vn(Xn) at time tn only depends on the current asset price Xn. We
introduce the hedge δn(Xn), which is the amount of the underlying asset in the portfolio
at time tn, when the asset price is Xn.
The average risk, over all paths of the underlying process, is given by

Rn = 〈`γ (Vn+1(Xn+1)− Vn(Xn)− δn(Xn) (Xn+1 −Xn))〉M ,

where the angled brackets 〈. . .〉M denote the average over the sampled asset values. The
functional minimization of Rn with respect to Vn(Xn) and δn(Xn) gives us equations
which allow us to determine the option value and hedge provided that Vn+1 is known.
We generate a set of M paths Xm

n , where n is the time index and m the path index.
We decompose Vn and δn over a set of K basis functions Lnk and Cnk . The use of local
basis function in RMC is presented in [9]. Therefore, we set Lnk and Cnk , respectively, as

28



a piecewise linear and constant function on each partition of real line. In addition, we
use adaptive breakpoints as proposed in [2]:

VKn (x) :=
K∑
k=1

ankL
n
k (x), δKn (x) :=

K∑
k=1

bnkC
n
k (x).

In other words, we reduce the original functional optimization problem (find the func-
tions Vn and δn) to a numerical optimization (find the coefficients ank and bnk ). We have a
good approximation of the true functional solution conditionally to K be large enough.
We then solve N minimization problems backwardly in time from maturity T , where
VN (x) is equal to the payoff function h. For each step n, we minimize

1
M

M∑
m=1

`γ
(
EKn,m (Vn+1, a

n, bn)
)

where

EKn,m (V, a, b) := V(Xm
n+1)−

K∑
k=1

akL
n
k (Xm

n )−
K∑
k=1

bkC
n
k (Xm

n )
(
Xm
n+1 −Xm

n

)
.

Thanks to the choice of the risk function `, we write `γ(y) = (y wγ(y))2 with a weight
function wγ(y) = 1+γ Sgn(y). Then, for each n ∈ {N−1, . . . , 0}, we solve the following
fixed point problem starting from the quadratic optimal solution

(
an,0, bn,0

)
:= argmin

(a,b)

1
M

M∑
m=1

(
EKn,m (Vn+1, a, b)

)2
,

(
an,p+1, bn,p+1) := argmin

(a,b)

1
M

M∑
m=1

(
EKn,m (Vn+1, a, b)wγ

(
EKn,m (Vn+1, a

n,p, bn,p)
))2

,

for every p ∈ {0, . . . , P − 1}, where Vn+1 = VK,Pn+1 ,

VK,Pn+1 :=
K∑
k=1

an+1,P
k Ln+1

k , δK,Pn+1 :=
K∑
k=1

bn+1,P
k Cn+1

k .

The least square problem with weights is solved using standard procedures. From a
pratical point of view, we have used a C++ library called StOpt (see the documentation
in [8]) to implement this previous RMC with local basis function and adaptative break-
points. Even though we do not establish any theoretical convergence result, we know the
previous algorithm is strongly related to a RMC method for computing generalized BS-
DEs proposed in [13, 11]. In following, we denote the optimal strategy (VK,Pn (·), δK,Pn (·))
as ϕN,Mγ (tn, ·).

Set of parameters. Regarding the RMC algorithm, we set M = 8 × 105, N = 40,
K = 80 and P = 20. For the underlying process, we set σ = 0.3, X0 = 100 and
T = 1. Here, we compare the optimal valuation/hedging rule ϕ?γ(t, ·) and the discrete
time problem solution ϕNγ (tn, ·) for a call option with strike K0 = 100 and a bear option
with strikes K1 = 80, K2 = 120.
Thanks to the previous algorithm, we compute the option value V N,Mγ (tn, ·). Owing to
the finite difference scheme in Subsection 4.1, we have the value function Uγ(T − tn, ·).
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Here we consider γ ∈ {0.0, 0.1, 0.2, 0.3} and tn ∈ {0.1, 0.3}. In Figure 7, we present
the relative error V N,Mγ (tn, ·)/Uγ(T − tn, ·) − 1 for a call option. We show analogous
plot for a bear spread option in Figure 8. We observe that relative errors seem to
confirm numerically the conjecture: the optimal price in discrete time for large number
of hedging times coincides asymptotically with the f∗-PDE solution.

�� �� ��� ��� ��� ���
�

-���

���

���

���

���
%

γ=�� γ=��� γ=��� γ=���

(a) Relative error at tn = 0.1.
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(b) Relative error at tn = 0.3.

Figure 7: Relative error V N,Mγ (tn, ·)/Uγ(T − tn, ·)− 1 for a call option.
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(a) Relative error at tn = 0.1.
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(b) Relative error at tn = 0.3.

Figure 8: Relative error V N,Mγ (tn, ·)/Uγ(T − tn, ·)− 1 for a bear option.

5 Appendix

5.1 Technical results

We gather the results related to the proof of Theorem 2.1. The first one is about
estimating the increment of ‖XεN

θ − ξ‖. This is quite standard, and the proof is left to
the reader.

Lemma 5.1. We have for any p ≥ 1

sup
θ∈[0,1]

EB‖XεN
θ − ξ‖

p ≤ Cn,N (ξ)εp/2N ,

for some constant Cn,N (ξ) ∈ Cpol depending on p. Also, for any function φ : [0, T ] ×
Rd → R in H1/2,1

loc,pol, it holds for any p ≥ 1

sup
θ∈[0,1]

EB |φ (tn + θεN , X
εN
θ )− φ(tn, ξ)|p ≤ Cn,N (ξ)εp/2N (5.1)
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for some constant Cn,N (ξ) ∈ Cpol depending on p.

Next, the following lemma gives a sufficient condition on the expectation of a random
variable ZN to ensure its almost sure convergence.

Lemma 5.2. Let (ZN )N≥1 be a sequence of positive real random variables. If ZN
satisfies E[ZN ] ≤ C/N1+δ for some finite numbers C ≥ 0 and δ > 0, then ZN converges
almost surely towards 0, i.e., ZN

a.s.−→
N→∞

0.

Proof. The argument is quite standard, and for the sake of completeness, we give it.
Summing up the expectation of ZN , we get

∑
N≥1 E[ZN ] ≤ C

∑
N≥1 1/N1+δ < +∞ by

hypothesis. Then the positive random variable
∑
N≥1 ZN has a finite expectation. Ow-

ing the Fubini theorem, this implies that
∑
N≥1 ZN < +∞ with probability 1. Therefore

the general term ZN converges almost surely towards 0.

This proposition is used to complete the proof of Theorem 2.1.

Proposition 5.3. Under the assumptions of Theorem 2.1, notably Assumption A5,
the set A has measure zero.

Proof. From Equation (3.6), we write Eθ in the following form

Eθ(S, y) = (Bᵀ
θSBθ − Tr[S]θ)/2− yθ,

for any θ, S, y ∈ [0, 1]× Sd × R. From Equation (3.12), we recall F and G

F (t, ξ) = f
(
t, ξ, v(t, ξ), Dxv(t, ξ), D2

xv(t, ξ)
)
,

G(t, ξ) = (σᵀ(D2
xv)σ)(t, ξ),

for any t, ξ ∈ [0, 1]× Rd. Here we show the set A defined in (3.16)

A =
{

(ω, t, θ) ∈ Ω× [0, T ]× [0, 1]
∣∣∣ Eθ(G(t,Xt), F (t,Xt)

)
= 0
}

has measure zero w.r.t. dPW ⊗ dPB ⊗ dt⊗ dθ. This is equivalent to say

EW⊗B
[∫ T

0

∫ 1

0
IEθ(G(t,Xt),F (t,Xt))=0 dθ dt

]
= 0.

Applying Fubini’s theorem, the tower property of the conditional expectation and the
assumption A5, the previous condition is equivalent to∫ T

0

∫ 1

0
EW

[
PB
[
Eθ(G(t,Xt), F (t,Xt)) = 0

∣∣ Xt

]
IG(t,Xt)6=0

]
dθ dt = 0.

For S 6= 0 ∈ Sd, y ∈ R and θ 6= 0, we claim that the random variable Eθ(S, y) admits
a density function w.r.t. the Lebesgue measure. Therefore, for such S, y, θ, we obtain
PB [Eθ (S, y) = 0] = 0. This proves the announced result.
Now we take S 6= 0 ∈ Sd, y ∈ R and θ 6= 0. In view of the expression of Eθ(S, y),
we notice that showing Eθ(S, y) admits a density function is equivalent to show that
Bᵀ
θSBθ/θ has a density function. The latter has the same distribution as GᵀSG where

G is a standard normal random vector. Consider the spectral decomposition of S:
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S =
∑I
i=1 λipip

ᵀ
i where pi are orthonormal vectors and the eigenvalues λi are strictly

positive. Since S 6= 0, I ≥ 1. As a consequence, setting Ḡi = pᵀiG we get

GᵀSG =
I∑
i=1

λiḠ
2
i .

The components Ḡi are independent and distributed as standard normal random vari-
ables. To sum up, we have decomposed GᵀSG as a weighted sum of independent χ2

1
random variables. Therefore, GᵀSG has a probability density given by the convolution
of χ2

1 random variables.

5.2 Proof of Proposition 3.2

Since we make estimates on [tn, tn+1], we simply write u instead of u(n+1). In the
following, Cn,N (ξ) denotes a generic constant with polynomial growth in the variable ξ
(see the definition in Section 3).
Before starting the analysis, we mention that a strategy of proof would be to use the
Feynman-Kac (FK) representations. Here, we would represent the PDE (1.5) in terms
of the SDE with zero drift and diffusion coefficient σ. Although natural, this approach
is cumbersome at some points, especially, when one has to deal with the derivatives of
the SDE w.r.t. the initial condition.
As an alternative, we take advantage of writing a FK formula using directly a Brownian
motion. Let ξ ∈ Rd, we set W̃ tn,ξ

t = ξ + Wt −Wtn , for all t ∈ [tn, tn+1], where W is
a d-dimensional Brownian motion. Now, the proof consists of applying Ito’s formula to
u(·, W̃ tn,ξ

· ) and estimating u(tn, ξ)− v(tn+1, ξ). Observe that W̃ tn,ξ is quite convenient
for sensitivity computations because the first (resp. the second) order derivative of
W̃ tn,ξ w.r.t. ξ is the identity matrix Id (resp. the null array 0 in Rd×d×d).

Proof of (3.9). Applying Ito’s formula to u(·, W̃ tn,ξ
· ) and taking the expectation leads

to
E
[
u(tn+1, W̃

tn,ξ
tn+1

)
]

= u(tn, ξ) + E
[∫ tn+1

tn

(
∂tu+ 1/2 Tr[D2

xu]
)
(t, W̃ tn,ξ

t )dt
]
.

Since Dxu(t, x) has a polynomial growth in space (because Dxu(t, x) ∈ H1/2,1
loc,pol ), we

have used that the stochastic integral is a martingale. By seeing that u is the solution of
PDE (1.5) with terminal condition u(tn+1, ·) = v(tn+1, ·), we get the FK representation

u(tn, ξ) = E
[
v(tn+1, W̃

tn,ξ
tn+1

) +
∫ tn+1

tn

g(t, W̃ tn,ξ
t )dt

]
, (5.2)

where

g(t, x) := f
(
t, x, u(t, x), Dxu(t, x), D2

xu(t, x)
)

+ 1
2 Tr

[
((σσᵀ)(t, x)− Id)(D2

xu)(t, x)
]
.

Subtracting v(tn+1, ξ) from Equation (5.2) leads to

u(tn, ξ)− v(tn+1, ξ) = E
[
v(tn+1, W̃

tn,ξ
tn+1

)− v(tn+1, ξ)
]

+
∫ tn+1

tn

E
[
g(t, W̃ tn,ξ

t )
]

dt. (5.3)

To obtain the announced results, we need to bound the derivatives of the expectation
E[g(t, W̃ tn,ξ

t )]. The following lemma provides an estimate in the interval [tn, tn+1].
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Lemma 5.4. Let α = (α1, α2, . . . αd) be a d-dimensional multi-index with |α| = α1 +
α2 + . . .+ αd ≥ 1. For any fonction φ ∈ H1/2,1

loc,pol, it holds

|∂αξ E[φ(t, W̃ tn,ξ
t )]| ≤ Cn,N (ξ)(t− tn)(1−|α|)/2, tn < t ≤ tn+1,

for some constant Cn,N (ξ) ∈ Cpol.

Under our assumptions, g(t, x) and v are in H1/2,1
loc,pol. By using the estimates in Lemma

5.1 with p = 1, we get

|u(tn, ξ)− v(tn+1, ξ)| ≤ ‖v‖H1/2,1
loc,pol

Cn,N (ξ)ε1/2
N +

∫ tn+1

tn

Cn,N (ξ)dt

≤ Cn,N (ξ)ε1/2
N ,

because the term related to the integral converges to zero at rate εN .

Proof of (3.10). Now we estimate the first derivative of u(tn, ξ)−v(tn+1, ξ) w.r.t. the
initial condition ξ. Differentiating (5.3) w.r.t. ξ yields

Dxu(tn, ξ)−Dxv(tn+1, ξ) = E
[
Dxv(tn+1, W̃

tn,ξ
tn+1

)−Dxv(tn+1, ξ)
]

(5.4)

+
∫ tn+1

tn

DξE
[
g(t, W̃ tn,ξ

t )
]

dt.

From our assumptions, g(t, x) and Dxv are in H1/2,1
loc,pol. By using the estimates in

Lemma 5.4 with |α| = 1 in Lemma 5.1 with p = 1, we get

|Dxu(tn, ξ)−Dxv(tn+1, ξ)| ≤ ‖Dxv‖H1/2,1
loc,pol

Cn,N (ξ)ε1/2
N +

∫ tn+1

tn

Cn,N (ξ)dt

≤ Cn,N (ξ)ε1/2
N ,

where the term related to the integral converges to zero at rate εN . This implies the
announced result.

Proof of (3.11). Analogously, we estimate the second derivative of u(tn, ξ)−v(tn+1, ξ)
by differentiating (5.4) w.r.t. ξ

D2
xu(tn, ξ)−D2

xv(tn+1, ξ) = E
[
D2
xv(tn+1, W̃

tn,ξ
tn+1

)−D2
xv(tn+1, ξ)

]
+
∫ tn+1

tn

D2
ξE
[
g(t, W̃ tn,ξ

t )dt
]
.

From our assumptions, g(t, x) and D2
xv are in H1/2,1

loc,pol. By using the estimates in
Lemma 5.4 with |α| = 2 in Lemma 5.1 with p = 1, we get

∣∣D2
xu(tn, ξ)−D2

xv(tn+1, ξ)
∣∣ ≤ ‖D2

xv‖H1/2,1
loc,pol

Cn,N (ξ)ε1/2
N +

∫ tn+1

tn

Cn,N (ξ)
(t− tn)1/2 dt

≤ Cn,N (ξ)ε1/2
N ,

where the integral term is of magnitude ε1/2
N . Therefore, we obtain the announced

estimates.
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Proof of Lemma 5.4. Let |α| 6= 0. Differentiating E[φ(t, W̃ tn,ξ
t )] w.r.t ξ yields

∂αξ E[φ(t, W̃ tn,ξ
t )] =

∫
Rd
φ(t, x)∂αξ p(tn, ξ; t, x)dx (5.5)

=
∫
Rd

(φ(t, x)− φ(tn, ξ))∂αξ p(tn, ξ; t, x)dx, (5.6)

where

p(tn, ξ; t, x) := 1
(2π)d/2(t− tn)d/2 exp

(
−1

2
‖x− ξ‖2

t− tn

)
is the transition density function of W̃ tn,ξ

t . To pass from (5.6) to (5.5), we have used
that for any |α| ≥ 1 it holds

0 = ∂αξ

∫
Rd
p(tn, ξ; t, x)dx =

∫
Rd
∂αξ p(tn, ξ; t, x)dx.

According to the result in [7, Section 6, Chapter 9] related to the bounds for the transi-
tion density function p(tn, ξ; t, x), it holds that there exist two positive constants c and
C depending on α such that

|∂αξ p(tn, ξ; t, x)| ≤ C

(t− tn)(|α|+d)/2 exp
(
−c‖x− ξ‖

2

t− tn

)
,

for any x, ξ in Rd and any tn < t ≤ tn+1. Due to φ ∈ H1/2,1
loc,pol and the previous estimate,

we have∣∣∣∂αξ E[φ(t, W̃ tn,ξ
t )]

∣∣∣
≤ C‖φ‖H1/2,1

loc,pol

∫
Rd

(1 + ‖x‖q + ‖ξ‖q) |t− tn|
1/2 + ‖x− ξ‖

(t− tn)d/2+|α|/2 exp
(
−c‖x− ξ‖

2

t− tn

)
dx,

for some real q > 0. Using the following estimate

|(1 + |y|q)e−y
2c| ≤ C̃e−y

2c̃, y ∈ R,

for some positive constants C̃ and c̃ < c, we get the existence of a new constant C̄ such
that ∣∣∣∂αξ E[φ(t, W̃ tn,ξ

t )]
∣∣∣ ≤ C̄(1 + ‖ξ‖p)(t− tn)d/2 |t− tn|1/2

(t− tn)d/2+|α|/2

= C̄(1 + ‖ξ‖p)(t− tn)(1−|α|)/2,

for any tn < t ≤ tn+1. Therefore, we obtain the announced result.
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