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Abstract

Systemic risk is a multifaceted concept that is of crucial import-
ance for regulators. In order to ensure financial stability, they need to
properly assess this risk, preventing financial shocks from affecting the
real economy. In this study, we evaluate the extent to which the fin-
ancialization of commodity markets contributes to systemic risk. We
consider a system consisting of both commodity futures and financial
markets in a sparse Vector AutoRegression (VAR) framework. It al-
lows to distinguish two temporalities of systemic risk: we can assess
"systematic" risk (integration) and propagation risk. In particular, we
can identify which markets are influential in systemic risk and thus
conduct a more in-depth investigation if necessary. Since we assume
sparsity in the parameter matrices, we can rely on an algorithm using
LASSO. In a static analysis, in the spatial dimension, we find that
sectors are separated, except for metals and finance. Including the
maturity dimensions proves necessary, as they connect all the sectors
and thus cause the integration of the whole system. In our dynamic
analysis, we focus on major financial events. We find that integra-
tion has been building up, was prominent and very high around each
of these events between commodities and financial assets and among
commodities, making common shocks a realistic possibility.
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1 Introduction
Since the 2007-2008 financial and economic crises, regulators have tried to
improve their understanding and monitoring of financial markets. The no-
tion of systemic risk has gained interest worldwide and became their focus,
considering how difficult it is to assess. The BIS (2001) defines systemic risk
as "the risk that an event will trigger a loss of economic value or confidence
in, and attendant increases in uncertainty about, a substantial portion of the
financial system that is serious enough to quite probably have significant ad-
verse effects on the real economy." From this definition, one can retain that
the risk comes from the financial system and that it has a high probability
of affecting the real economy, which is separated from the financial system.
This system can be split into several layers, which are intra- and intercon-
nected: institutions, instruments and markets.
Since the main events that are considered as the start of the 2008 crisis were
the default of major financial institutions, the majority of the research fo-
cused on defaults (and their propagation) and their contribution to systemic
risk. Please refer to Benoit, Colliard et al. (2017) for a review on this topic.
More specifically, regulators and other international institutions have come
up with a set of basic indicators to assess the "systemicity" of an institution.
The Bank for International Settlements (BIS) published a methodology in
BCBS (2018b) using the following criteria: size, cross-juridictional activity,
complexity of the activity, nonsubstitutability of services and interconnec-
tedness of the institution. Each criterion consists of several indicators. For
example, the size score is computed as the "total exposures as defined for
use in the Basel III leverage ratio", which is explained in BCBS (2018a).
These exposures include derivatives, which are basically market valued and,
if not netted, are inflated by a coefficient alpha, currently set to 1.4. Hence,
derivative positions of financial institutions may pose even more regulatory
pressure if their underlying assets are risky.

In particular, it is well known that individual commodity prices experi-
ence many jumps and thus their return distributions have fat tails, see e.g.
Deaton and Laroque (1992). This does not prevent financial institutions to
be involved in commodity spot and derivative markets, as shown by Benoit,
Hurlin and Perignon (2015). Their increasing presence and its consequences
have raised concerns regarding the influence of financial markets on commod-
ity markets, which may be referred to as the financiarization of commodity
markets (see Cheng and Xiong (2014) for a review of this strand of literat-
ure). These two sectors actually interact in several ways. Since commodities
appear in portfolios for the reasons mentioned above and in economic activ-
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ities, they may in turn influence many financial assets, like bank or corporate
stocks. Commodities are also influenced by financial institutions using them:
Büyükşahin and Robe (2014) show that the presence of speculators on both
equity and commodity markets generates correlation between their price re-
turns. In addition, many large funds are dedicated to commodity investing
and their interventions impact prices, for example when large synthetic Ex-
change Traded Funds (ETFs) or indices rebalance their portfolios or roll their
futures contracts.

A strand of literature shows that futures markets, and later ETFs, have
taken over the price discovery function from their spot counterpart. For ex-
ample, Garbade and Silber (1983) show that spot markets play a little role
compared to futures markets for some agricultural and metals markets. This
move towards futures contracts and ETFs can also be witnessed for financial
assets, as evidenced by Hasbrouck (2003) for the S&P500.
In fact, futures and spot markets are intertwined (for example because of
arbitrage), making the propagation of information between the two as fast
as market trading allows. As such, commodity futures present the poten-
tial to transmit financial shocks to commodity spot prices, which may affect
economic activity and inflation, hence the real economy. Indeed, financial
agents rebalancing their portfolios because of a shock on financial asset prices
may generate large variations of commodity futures prices, which would sub-
sequently translate into spot price movements. Due to the market trading
speed, this potential influence generates systemic risk at a daily or even intra-
daily frequency, as P. K. Jain, P. Jain and McInish (2016) find for Japanese
equities.

Assessing systemic risk requires taking into account many interconnec-
tions between agents and markets. Regulating agents should work in the
long-run. But since trading can occur at milliseconds or even faster, it seems
more relevant to intervene on markets instead of agents (who need to dis-
close their positions, which may take time) to avoid flash crashes. Circuit
breakers have been set if they were not already before the crises, but due to
the potential leverage of financial institutions and to those interconnections,
even small variations may lead to large losses, which may in turn affect other
agents and markets.
If we need to account for the real economy, we need to consider many other
factors than just financial markets. Commodities indeed have many economic
and financial links, to other commodities, weather, financial assets, etc. Nev-
ertheless, many papers have focused on specific links. For instance, Ewing,
Malik and Ozfidan (2002) examined volatility spillovers between crude oil
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and natural gas markets. Silvennoinen and Thorp (2016) study the correl-
ation between crude oil and agricultural markets, which may have changed
dramatically due to the development of biofuel.
All in all, it is important to incorporate as many markets as possible into
a single system, so that one avoids missing relevant variables in the inform-
ation transmission mechanism, and also to conduct a dynamic analysis to
understand how the system evolves.

This work aims at providing tools for regulators to better understand
and monitor a large system of markets from different sectors. We revisit the
following relationships in a high dimensional setting: the integration of fin-
ancial and commodity markets, the potential propagation of information and
shocks between them and among commodities and the relationships between
futures and spot markets. We use a sparse Vector AutoRegression (VAR)
framework on daily data. Integration is measured in the partial correlation
(PC) matrix, which gives the correlation coefficients of each pair of vari-
ables, conditional on all the other variables in the system. It thus filters
out their influence and provides a more accurate measure of the dependence,
hence of integration. The use of partial correlations here improves on un-
conditional correlations (see Appendix A for an explanation and example).
While propagation may be more prominent at the intraday level, daily re-
turns should contain more economic information, such as the transmission of
information from one time zone (closing) to another (opening), hence daily
propagation would dismiss microstructure noise. Propagation is measured in
the Granger causality structure of the system, given by the AutoRegression
(AR) matrix or matrices.

Such an analysis has both policy and industry implications. For the
former, monitoring the evolution of the system can help prevent the build-up
and occurrence of systemic crises by avoiding too much market integration
and/or propagation. Disentangling the economic links from financial ones –
by having or not economic foundations for them – would also help under-
stand where the risks lie. Identifying those (ephemeral) financial links can
also trigger intervention on these markets in order to break them and avoid
unnecessary risk transmission.
For the latter, assessing integration would allow to allocate capital in an op-
timal way, so that the portfolio would benefit from diversification. Unless
the manager can trade at very high frequency – and exit the markets before
he suffers large losses –, investing in markets that have economic links rather
than evanescent financial links may prove more robust and stable. For ex-
ample, Lohre, Papenbrock and Poonia (2014) have recourse to graph theory
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on equity sectors correlation matrices and can derive meaningful risk meas-
ures from the graphs. Moreover, they find that the location of the asset in
the graph matters in terms of performance and market timing.

In Section 2, we review some of the literature related to our work here.
In Section 3 we briefly introduce our database. In Section 4, we present
the methodology we use and how it is relevant to study propagation and
integration. In Section 5, we analyse our whole database (2000 to 2014) to
provide long-term reference graphs to compare with and explain the meas-
ures and results we derive. In Section 6, we then conduct a dynamic analysis
(with a rolling window), in which the problem becomes highly dimensional,
thus the relevance of using LASSO. More specifically, we focus on periods
around major financial events that may have affected commodity markets.
In chronological order, first, we look at the day BNP Paribas froze the re-
demption of some of its investment funds because it could not value some of
its structured products (August 9, 2007, one of the dates that are defined as
the beginning of the subprime crisis). Second, we examine integration and
propagation around the default of Lehman Brothers (September 15, 2008),
which is often assumed to be the beginning of the economic crisis. Third
and fourth, we assess whether the minimum and maximum returns on the
S&P500 index in our sample, respectively October 9, 2008 and October 28,
2008, propagated to commodity markets, since we observed in the data that
many of them experienced their extremum return on the following day. Fifth,
we look into what may have happened around the day of the May 6, 2010
Flash Crash, since it has affected some contracts in our system, namely the
S&P500 e-mini futures.

2 Related literature
As stated before, we revisit the following relationships in a high dimensional
setting: the integration of financial and commodity markets, the potential
propagation of information and shocks between them and among commodit-
ies and the relationships between futures and spot markets. We thus follow
these three strands of literature, plus that of systemic risk.

Due to the spectacular (cascades of) defaults occurring since the be-
ginning of the subprime crisis in August 2007, regulators and researchers
have focused on studying the default of institutions and how the default can
propagate and affect the whole financial system. For example, Acharya et
al. (2017) developed the Systemic Expected Shortfall (SES), which measures
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the propensity of an institution "to be undercapitalized when the system as
a whole is undercapitalized". They thus focus on the increased risk faced by
an institution due to an undercapitalized system (crisis).
On the contrary, Adrian and Brunnermeier (2016)’s CoVaR measures "the
change in the value at risk of the financial system conditional on an insti-
tution being under distress relative to its median state", so the institution
contributes to the risk of the financial system.
Other measures have been created, in particular regarding (the formation
of) financial networks. Hautsch, Schaumburg and Schienle (2015) refines
their analyses by modelling networks of institutions and computing the con-
tribution of each to the Value-at-Risk (VaR) of the others, based on vari-
ous variables such as leverage, size or macroeconomic context. Capponi and
Larsson (2015) provide a model of interconnected agents and markets through
their full balance sheets and can thus derive measures of "systemicness" of a
shock on an institution or on a market by accounting for all the mechanisms
and dynamics related to that shock.
Though very insightful and beautiful, these models and applications rely on
information that may not be available at a relevant frequency. Benoit, Hurlin
and Perignon (2015) infer the exposures of institutions from the disclosure
of their VaR per sector, which may become quickly irrelevant as trading may
occur much faster than the disclosure. Regulating or monitoring markets
instead seems more efficient, but requires being able to process the influx of
data as quickly as possible.

While some actions were taken by exchanges for preventing flash crashes
(e.g. breakers), due to the potential leverage of financial institutions and to
those interconnections, even small variations may lead to large losses. These
losses may translate into defaults and further shocks for the financial system
and the real economy. It is thus crucial, as has been identified by regulators
(e.g. in BIS, FSB and IMF (2009)), to be capable of understand and exam-
ine all the links at play on markets. This is where our study contributes:
we analyse a potentially highly interconnected system of markets and unveil
economic and financial links from their complexity and the amount of data.
For example, Lautier and Raynaud (2012) studied the integration of a very
large system of futures contracts (220) and filtered their correlation matrix
in order to retain only the most important connections. Our methodology
differ and, in terms of systemic risk, our aim here is to distinguish integration
and propagation, which represent different temporalities of dependence. It
should allow to better understand the links between markets and monitor
their risks more accurately.
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Benoit, Hurlin and Perignon (2015) found that financial institutions have
exposures to commodities. Gorton and Rouwenhorst (2006) indeed show
that before 2004, a commodity futures index displayed interesting diversific-
ation benefits, with returns about the same as the S&P500 on average and
zero or even negative correlation with it. Nonetheless, since these have been
considered individually risky due to jumps and risk premia, they could very
well generate losses for agents using them. In addition, commodities have
many economic and financial links, to other commodities, weather, financial
assets, etc. largely increasing the sources of risk, even more so if we consider
commodity indices. In addition, Tang and Xiong (2012) show that commod-
ities belonging to an index have larger correlations than commodities not
included in it, creating more (financial) links between them. The literature
on the financialization of commodity markets also unveiled potential ephem-
eral links between the two sectors and hence the influence of the financial
system on commodity (futures) markets.
While there is a need for comprehensiveness, most papers have only focused
on specific links, probably due to the lack of proper methodology. For in-
stance, Zhang et al. (2008) looked at the spillover effects between US dol-
lar exchange rate and oil prices. Hammoudeh and Yuan (2008) considered
spillover between metals by taking into account interest rates and oil price
shocks, while Park and Ratti (2008) assess how oil prices affect equity in-
dices in European countries and the US. Ewing, Malik and Ozfidan (2002)
examined volatility spillovers between crude oil and natural gas markets.
Since the 2005 Energy Act, biofuel started being used and may have changed
the links of energy markets and agricultural markets; hence the work of Sil-
vennoinen and Thorp (2016).
We thus also contribute to the literature on the financialisation of commod-
ity markets by providing tools to analyse a large system of interconnected
markets, from both commodities and financial assets. Those tools should
help unveil economic and financial (ephemeral, as shown by Büyükşahin and
Robe (2014)) links. Focusing on the links between the two sectors (any pair
of markets, one from each sector) should provide insight about which markets
are financialised and how. Also, links that do not have reasonable economic
foundations may also be qualified as financial, requiring deeper investigation
and closer monitoring.

We also contribute to the literature on the propagation of information
and price discovery function of spot and futures markets. While futures
are derivatives – hence their price should be "derived" from the price of
their underlying asset, as in the theory of storage by Kaldor (1939), Work-
ing (1949), Brennan (1958) and Telser (1958) –, it sometimes seems to be the
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contrary. As we mentioned earlier, Garbade and Silber (1983), Schwarz and
Szakmary (1994) and Hasbrouck (2003) show that spot markets play a little
role compared to futures markets for some commodities and financial assets.
The relationship is actually bi-directional, spot influencing futures and vice
versa.
In addition, according to the World Federation of Exchanges 2017 report,
equity and equity indices futures were the first class of futures in terms of
volume (number of contracts). They are closely followed by commodity fu-
tures, representing at least 38% of all futures contracts, and their volume is
following a positive trend. The importance of these two sectors and their
connections thus represent significant risk. Indeed, since commodity futures
are easier to trade than physical commodities, financial agents focus mainly
on futures for their activity. Since they are the primary source of information
on prices and since spot and futures markets are tightly connected, financial
agents can quickly make commodity futures prices move, hence spot prices
and the real economy.
Our contribution here lies in differentiating propagation and integration,
which takes into account different temporalities of information transmission.
In addition, we can assess which of the spot or futures market is dominant
in terms of both propagation and integration, hence which one contributes
the most to the price discovery process for all the markets in the system.

All in all, it is important to incorporate as many markets as possible into
a single system, so that one avoids missing relevant variables in the inform-
ation transmission mechanism, and also to conduct a dynamic analysis to
understand how the system evolves.
We use a sparse Vector AutoRegression (VAR) framework on daily data to
distinguish two components of systemic risk: we assess the integration of
markets at the link level (pairwise), but also at a more global level (sector,
system), and the propagation of returns between markets.
Coming back to the focus of this work – systemic risk–, the larger the system
is, the more difficult the analysis can be. Having many sources of information
in a single study requires to identify the relevant ones.
For example, Lautier and Raynaud (2012) also use graph theory to filter a
very large correlation matrix and analyse the dynamics of the correspond-
ing graph over time. It provides a visual representation that enables quick
inspections and displays a meaningful structure, as markets from a same sec-
tor cluster and sectors connect through relevant markets. They then derive
several measures from the graph and find an increasing integration (a con-
densing graph) in their system of commodities and financial assets, which
reaches its maximum at the end of 2008, after the beginning of the crisis.
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Using a VAR framework allows to distinguish between increasing integration
and propagation. Working on a system of different markets (51 time series
from 17 markets, 4 sectors), we rely on the seemingly reasonable assump-
tion that not every market/contract is linked to every other. For example,
why would the 12-month eurodollar contract be linked, contemporaneously
or with a lag, to the 3-month natural gas, 12-month copper, 1-month soy,
2-month soy, 3-month soy, 4-month soy, etc. contracts? Based also on the
results of Lautier and Raynaud (2012) that the contemporaneous depend-
ence matrix can be filtered but still provides meaningful information, we use
a calibration algorithm with LASSO penalisation from Barigozzi and Brown-
lees (2017). We choose LASSO for several reasons (see Appendix B for more
details), but the most important ones are that it fits our assumption (sparse
matrices), which can be represented as graphs, and it allows to work in high
dimension (so we can increase the size of our system as much as we want or
need to). Their algorithm calibrates a VAR model (AR and PC matrices)
in a single step, which has several advantages, e.g. in terms of convergence
properties of the parameters. It also avoids forcing propagation on the data
by first calibrating the AR matrices as is common in other algorithms.

Barigozzi and Brownlees (2017) also provide an application of their al-
gorithm to volatility spillovers between S&P100 stocks. While our interest
lies in the very short term and the dynamics of the system, they focus on
longer term horizons by combining the AR and PC matrices into a single
dependence matrix.
This work also differs from Diebold, Yılmaz and Liu (2017), who also use
a sparse VAR framework, but they use an adaptive elastic net (a mix of
LASSO and Ridge penalisations) and focus on commodities only. Also, as
in Barigozzi and Brownlees (2017), they summarise both the contemporan-
eous and lagged influences into a single matrix. They then derive variance
decompositions and aggregate them into node-level and system-level direc-
tional connectedness to provide a global measure of systemic risk. Here, as
stated above, we work on partial correlations (from the concentration mat-
rix), which gives us the conditional (in)dependence structure of the system,
compared to the variance decompositions. We also keep the contempor-
aneous and the lagged influences separated in order to disentangle system
integration (in the former) from propagation (from the lagged links). It thus
allows to identify which markets are actually involved in each component
and monitor and intervene on them if necessary. Other works have also
used sparse frameworks, but have only focused on one matrix: a sparse VAR
with only the AR matrix being sparse or only the concentration/covariance
matrix being sparse (see Barigozzi and Brownlees (2017) for some examples).
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The sparsity of the matrices enables their representation as graphs: the
partial correlation graph and the Granger causality graph. The nodes of the
graph will represent the time series of our system and the edge between a
pair of nodes will represent, in the former, the PC (undirected edge) and in
the latter, their Granger causality (directed edge). In the integration (PC)
graph, if some nodes are connected (i.e. belong to the component in the
graph), they may be subject to a common factor, driving all their partial
correlations. Even though Barigozzi and Brownlees (2017) recommend con-
trolling for those common factors to get sparser matrices, we want to have
the possibility to visualise whether financial and commodity markets are in-
fluenced by a common factor or not.
Based on these graphs, we derive graph theoretic measures that can help
monitor potential propagation and integration and help identify which mar-
kets should be investigated in more depth. More particularly, the sparsity
of the matrices allows to assess the importance of propagation and integ-
ration in terms of number of connections involved (degree centrality). In
addition, we use the total communicability centrality measure by Benzi and
Klymko (2013) to identify important contracts and also to assess how easy
information can flow in the network (which is also a measure of integration
when applied to the PC matrix). We adapt this measure to our applica-
tion by using a weighted matrix instead of an adjacency matrix. It thus
accounts for the individual weights (partial correlations) instead of using a
single weight parameter, as we will explain below. This work should thus
provide means for regulators to understand and monitor the short-term dy-
namics of markets and eventually be used to prevent the occurrence of crises
by taking action on the identified markets if propagation risk or integration
are too high.

3 Data
We collected futures prices for 17 different underlying assets from 4 differ-
ent sectors (energy, finance, metals and agriculture) from Datastream, con-
structed continuous time series with constant maturity and computed daily
returns.

We have 208 time series, with many maturities for some markets, but will
only keep 3 for each market (short-, medium- and long-term contracts) for
several reasons. First, not all maturities of each market are relevant. Second,
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Table 1: Data summary
Market Exchange Node labels (maturity in months)

WTI CME-US WTI1 (1), WTI2 (3), WTI3 (12)

Brent ICE-EU Brent1 (1), Brent2 (3), Brent3 (12)

Heating Oil CME-US H.O.1 (1), H.O.2 (3), H.O.3 (12)

Gasoil ICE-US Gasoil1 (1), Gasoil2 (3), Gasoil3 (12)

US Nat. Gas CME-US USNat.Gas1 (1), USNat.Gas2 (3), USNat.Gas3 (12)

UK Nat. Gas ICE-EU UKNat.Gas1 (1), UKNat.Gas2 (3), UKNat.Gas3 (9)
Wheat CME-US Wheat1 (3), Wheat2 (5), Wheat3 (12)

Soy Bean CME-US Soybean1 (2), Soybean2 (4), Soybean3 (12)

Soy Oil CME-US Soyoil1 (1), Soyoil2 (3), Soyoil3 (12)

Corn CME-US Corn1 (3), Corn2 (5), Corn3 (12)
Eurodollar CME-US IR1 (1), IR2 (3), IR3 (12)

USD/EUR Fx Rate CME-US FX1 (3), FX2 (6), FX3 (12)

S&P500 CME-US SP5001 (Spot), SP5002 (3), SP5003 (6)
Gold CME-US Gold1 (1), Gold2 (4), Gold3 (12)

Silver CME-US Silver1 (1), Silver2 (3), Silver3 (12)

US Copper CME-US USCu1 (1), USCu2 (3), USCu3 (12)

UK Copper LME-EU UKCu1 (1), UKCu2 (3), UKCu3 (12)

we want to have an overall balanced representation for each market. Third,
working with too many time series, even in a high dimension framework with
variable selection and filtering, can still lead to results that are difficult to
visualise and interpret.
Table 1 details the underlying assets (Market column) we retained, the ex-
change on which they are traded (Exchange column) and the maturity of the
contracts (Node labels and maturity) we kept. We thus chose three maturit-
ies for each market: the front-month contract (or actual spot), representing
the spot value (short term); the 3-month maturity (or closest greater than 3),
representing the medium term; and the 12-month maturity (or largest avail-
able if less than 12), representing the long term. We will use front-month or
spot interchangeably.
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We thus end up with 51 nodes/variables, with a total of 2889 daily ob-
servations of return for each, from 2000-01-24 to 2014-02-14, after removing
missing data.

4 Methodology
An obvious way to think about propagation is to consider the effect of one (or
several) market(s) on others. This is exactly what a Vector AutoRegression
(VAR) is doing: it assumes that previous observations of a vector of random
variables influence the current observation. More formally, if Yt is our vector
of random variables Yi,t, i = 1, ..., N , we have that:

Yt =

p∑
k=1

AkYt−k + ut (1)

with p being the order of the VAR and ut ∼ N (0,Σu).

Table 2: Calibrated AR matrix of a VAR(1) model on metals markets in the
spatial dimension.

UKCu1 USCu1 Silver1 Gold1

const 0.0005 0.0004 0.0004 0.0003**
L1.UKCu1 -0.2432*** 0.0362 0.0072 0.0163
L1.USCu1 0.2235*** -0.1005** -0.0193 -0.0366
L1.Silver1 -0.0561** -0.0459* -0.0598** -0.0140
L1.Gold1 0.0476 0.0522 0.0680 0.0213

* = statistically significant at 10%, ** = statistically significant at 5%, *** = statistically
significant at 1%. L1 means lagged value of 1 period.

Applying this framework on small systems gives interesting results. For
example, if we consider only metals spot markets (here, two coppers, silver
and gold) and calibrate a VAR(1) using OLS, we find the parameter estim-
ates of Table 2. Keeping only the statistically significant coefficients (i.e.
considering the others are 0), which correspond to Granger causality rela-
tionships, we can summarise these parameters as links in a graph, as shown
in Figure 1. The nodes represent the time series of returns of each futures
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contract. The directed links represent the Granger causality relationships.
For example, the link going from USCu to UKCu means that the return on
USCu at a date t will affect the return on UKCu at date t+1 (which is given
by the corresponding entry in the VAR(1)).

Figure 1: Granger causality directed graph from VAR(1) on metals spot
markets

UKCu USCu Silver Gold

-0.1005

0.2235

-0.0561

-0.2432

-0.0459

-0.0598

The nodes represent the time series for each spot market. The directed links (arrows)
represent the Granger causality between the different markets: for example, the arrow
from USCu to UKCu means that the return on the copper traded in the US will Granger
cause (influence) the return on the copper traded in London on the following day. The
number on each edge represents the autoregression (AR) coefficients from Table 2.

The directionality of these links give interesting insights. There is some
autocorrelation for both coppers and for silver and it is negative for all of
them. This is consistent with the common view that commodity markets ex-
hibit a mean-reverting behaviour (see Lutz (2010) for a review of explanations
and tests). The link from USCu to UKCu could reflect the time difference
between the markets: the information from the closing of the Chicago market
would be incorporated the following day for the London market, for about
22%. Silver (Chicago) is influencing the two copper markets but is contrib-
uting only little to these markets. What is also interesting is that the gold
market is not affected or affecting the others (at a statistical significance of
1%), but only with a lag 1. There is thus a clear separation between the
reserve of value of the gold and industrial metals. This may be explained by
a different temporality of the dependence: some cross-correlation at longer
lags or maybe even in the contemporaneous observations.

We thus also study the contemporaneous correlation matrix. More pre-
cisely, we turn to the partial correlation (PC) matrix C, because it en-
codes the conditional dependence structure of the time series. Indeed, if
cij = 0, then Yi and Yj are independent conditional on the other variables
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(Yk, k 6= i, j). It thus filters out the influence of the other variables, which
may have resulted in an exaggerated correlation if the two variables i and
j are not actually correlated but are both correlated with another one for
example (see Appendix A for more details).
If we turn to the PC matrix from the VAR(1) calibration, we find the

Table 3: Calibrated partial correlation matrix of a VAR(1) model on metals
markets in the spatial dimension.

UKCu1 USCu1 Silver1 Gold1

UKCu1 -1.0000 0.8516*** 0.0169 0.0061
USCu1 0.8516*** -1.0000 0.1307*** 0.0149
Silver1 0.0169 0.1307*** -1.0000 0.7321***
Gold1 0.0061 0.0149 0.7321*** -1.0000

* = statistically significant at 10%, ** = statistically significant at 5%, ***
= statistically significant at 1%.

one displayed in Table 3. We can first see that all off-diagonal coefficients
are positive, indicating a positive dependence between all metals. There are
only two high PC coefficients: the one between US and UK coppers (0.8516)
and the one between silver and gold (0.7321). This results confirm the view
that industrial metals are to be considered different of precious metals. The
other coefficients being relatively small (between 0.1307 and 0.0061), one
may consider that they are not relevant, but statistical tests show that the
PC between silver and US copper is also significant at 1%.

Figure 2: Partial correlation undirected graph from VAR(1) on metals spot
markets

UKCu USCu Silver Gold
0.8516 0.1307 0.7321

The nodes represent the time series for each spot market. The undirected links represent
the statistically significant partial correlation (PC) between the different markets. For
example, the edge between UKCu and USCu means that, filtering out the influence of
silver and gold, the two coppers are contemporaneously dependent. The number on each
edge represents the PC coefficients from Table 3.

Keeping again only the statistically significant PC coefficients, we can
represent them as a graph, shown in Figure 2. We find that the graph cor-
responding to the statistically significant PC matrix is linear. Though there
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is no direct link between UKCu and Silver (their PC is not statistically sig-
nificant, so assumed to be 0), there is a path connecting the two, through
USCu. This means that even though they are not directly dependent, they
will display direct dependence if we look at the unconditional correlation coef-
ficient (see A for a detailed explanation), since it would be nonzero. Working
on PC graphs thus gives a meaningful visualisation: if we see that two mar-
kets/sectors are connected, it means that they may be subject to common
shocks, that they are integrated.

Working on a larger system would allow to filter out the influence of more
variables and uncover a more accurate dependence between any pair of vari-
ables. Moreover, after filtering this influence, we may end up with many PC
coefficients close to 0, potentially statistically insignificant. The more hetero-
geneous the system is, the more PC coefficients should be equal to 0 (since
there would be no actual direct dependence between two unrelated assets).
In addition, as per the results of Lautier and Raynaud (2012), filtering the
unconditional correlation matrix still gives a meaningful dependence struc-
ture, with linear graphs in maturity dimensions and sectorisation. Diebold,
Yılmaz and Liu (2017) also find clustering in commodities by sector, which
also comforts us in using PC instead of unconditional correlations. We can
thus assume that there may be sparsity in the dependence structure (every
one of our contracts should be independent of many of the others).

Based on this assumption, the Least Absolute Shrinkage and Selection
Operator (LASSO) regularisation is particularly suited for calibrating sparse
parameter sets, by setting the irrelevant ones to 0 and taking these 0s into
account when estimating the others. This regularisation thus allows to select
the relevant parameters without giving any prior about them.
In addition, instead of successively estimating the AutoRegression (AR) mat-
rix and then the partial correlation matrix of the residuals, we will estim-
ate them simultaneously. Indeed, having a two-step estimation procedure
gives nontrivial properties of the estimators and convergence, as investigated
byBarigozzi and Brownlees (2017). Nevertheless, having to estimate both
the AR matrices (N ×N for each lag) and the contemporaneous PC matrix
(N×(N−1)

2
) of the residuals makes this problem high-dimensional even for re-

latively small systems. For example, if we take our 17 different assets and
keep only 3 contracts for each, we have a system of N = 51 nodes/variables.
In a VAR(1) model, this would mean 51 ∗ 51 = 2, 601 AR coefficients, plus
51 ∗ 50/2 = 1, 275 PC coefficients for a total of 3,876 parameters. The need
for a large amount of data prevents one from working on high-dimensional
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systems. We want our parameters to reflect both the short- and long-term
dynamics of the markets. We thus rely on machine learning to provide robust
parameter estimates in spite of the relatively low number of observations, by
selecting only the relevant parameters. For example, Diebold, Yılmaz and
Liu (2017), though also using machine learning to estimate the parameters
of their VAR, use only 19 variables (sub-indices). We rely on LASSO instead
of the adaptive elastic net they use, because LASSO has a stronger shrinking
effect, giving more sparsity in the parameters than ridge or elastic net, which
should be more suited to our study.

In the end, we will calibrate a high-dimensional VAR model on our
data, with sparse AR and PC matrices. We use an algorithm developed
by Barigozzi and Brownlees (2017), called "nets algorithm", in order to sim-
ultaneously estimate the sparse AR and sparse PC matrices thanks to a
LASSO regularization. These two sparse elements are then represented as
two graphs, as we saw before. The directed graph for the Granger causality
links from the AR matrix will inform us about potential propagation of in-
formation and shocks, while the undirected graph for the contemporaneous
PC will rather inform us about the integration of the system, and hence, the
potential for systematic shocks.
This framework and the sparsity will allow us to assess systemic risk in dif-
ferent ways. We can, for instance, visualise the propagation links, which
markets and sectors are involved, assess integration at a glance by looking
at the PC graph and the number of components it has, how the markets
or sectors are connected/integrated. More quantitatively, we compute the
average or range of propagation coefficients, of integration coefficients, and
derive some graph theoretic measures such as centrality in the graphs, to
identify the one(s) that is (are) the most important market(s), contributing
the most to shocks.
More specifically, we will briefly consider degree centrality (the number of
links/neighbours of a node) and compare the results with total communicab-
ility centrality, developed by Benzi and Klymko (2013). This measure allows
to take into account not only direct neighbours (degree), but also indirect
neighbours (even infinitely far ones). More formally, if A is the adjacency
matrix of the graph, its powers (Ak) provides the number of paths – directed
or not, depending on the graph – of length k between each pair of nodes.
Hence, summing the powers of this matrix gives the total number of paths
between each pair of nodes. But to dampen the effect of longer paths, it is
common to add weights to the powers of the adjacency matrix. Here, the
weights will be the βk/k!, which allows the sum (power series) to converge
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to the exponential of the weighted adjacency matrix as follows:

∞∑
k=0

βk

k!
Ak = eβA (2)

Each coefficient
[
eβA
]
i,j

thus gives the communicability between nodes i and
j. To find the total communicability centrality of each node, we just sum
each row.
In this paper, we will slightly change it: instead of taking βkAk, we will
directly take the sparse partial correlation matrix (with its diagonal set to
0 to avoid self-loops): it allows us to take into account the specific partial
correlation of each link instead of a general β coefficient.
In addition, taking the sum of the centralities gives the total communicab-
ility of the network, allowing to have an overall measure of the ability for
information to flow in the system (and see how it evolves over time for ex-
ample) and even compare different network structures. We also use this as
a global measure of integration of the system when we consider the PC graph.

5 The reference graphs (static, full sample)
We will first study the case where we calibrate a sparse VAR(1) using all our
observations, which will provide us a reference case for future comparisons.
We first calibrate on a subset of our variables (spatial dimension: only the
front month contract for each of the 17 assets) and then calibrate on our 51
variables (3D). We can thus analyse the two graphs that emerge from this
calibration: the graph of pairwise partial correlations of the residuals and
the graph of Granger causality.

5.1 The partial correlation graph

Since the partial correlation (PC) between two variables measures their de-
pendence conditional on the observation of all the other variables, it filters
out their influence. If despite this filtering, some variables are still depend-
ent, it means that they are directly and actually dependent on each other
(instead of being correlated because they would both be correlated with an-
other variable).
As explained before, we can assume that most of our markets are not con-
ditionally dependent of many others, that there should be some clustering
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(into sectors for example). If we instead observe that markets that should be
unrelated are connected in the graph, it may mean that they are influenced
by a common factor, and that it may represent a(n) (ephemeral) financial
link. Hence, the number of components observed in the estimated graphs will
tell us whether the markets under study are integrated (if the markets are
connected) or if they are still subject to different fundamentals. In particu-
lar, if all the nodes belong to a single component, it means that the system
is completely integrated, prone to systematic shocks.
We can refine this analysis by looking at the values of the partial correlations.
The average PC will tell whether this integration is strong or not. We can
also check the minimum and maximum values of these partial correlations,
in order to check their amplitude in the system. We will also assess which
markets are the most central in terms of dependence with the others by look-
ing at the total communicability centrality of the nodes.

5.1.1 In the spatial dimension

Figure 3 represents the calibrated partial correlation graph in the spatial
dimension (only the front-month or spot). Nodes are coloured according to
their sector (red for finance, blue for energy, green for agriculture and orange
for metals), edges are coloured according to the sign of the partial correlation
(grey for positive, violet for negative) and their width represents the absolute
value of the coefficient. The PC range from -0.04 to 0.84, with an average of
0.28 (only one link has negative PC). Unconditional correlations range from
-0.04 to 0.85, but are not as sparse (74% sparse vs. around 87% for partial
correlation matrix, 18 links among the 136 possible ones). We remind that if
there exist a path between two nodes (if they belong to the same component)
in the PC graph, their unconditional correlation coefficient will be nonzero.
We can notice several interesting insights from this graph. The first one
is that it consists of three components, while we theoretically have 4 sec-
tors: one cluster for energy markets, one for agricultural markets and one for
metals and financial markets.
Lautier and Raynaud (2012) find similar results based on the filtering of
the correlation matrix using Minimum Spanning Trees (MSTs), which con-
strains the graph to be connected (single component) but did not have metals
markets. Here, allowing the existence of several components helps us assess
whether the integration is systemwide or still "sectorwide". In addition, we
allow for cycles here (while the MSTs do not), which tell us precisely which
markets are connected with which others, instead of imposing to go through
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Figure 3: Partial correlation matrix graph in the spatial dimension

Full sample Spatial Partial correlation graph
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positive, violet for negative. The size of the nodes represents their degree: the bigger the
node, the higher its degree. The width of the edges represents the absolute value of their
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a certain node. The financial and metals sectors are connected through
USD/EUR exchange rate and gold market, which can be considered a re-
serve of value. This component is moreover organised linearly, meaning that
there is no "direct" dependence between all these markets, but will seem so
in the unconditional correlation matrix, due to the other connections in the
component. On the contrary, the other two components are quite connected
and reveal actual integration in these sectors.
Finally, we can note that the S&P500 is not connected to others in this
graph, meaning that its return innovations are independent of the others.
In terms of portfolio management, it means that, as found by Gorton and
Rouwenhorst (2006), if we focus only on the front-month contracts, an index
made of commodity futures would be uncorrelated to this equity index, and
would thus provide diversification benefits.
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Table 4: Total communicability centrality of markets (from high to low) in
the reference graph of partial correlations (PC) in the spatial dimension

Centrality

Heating Oil 1 2.75711552
Brent 1 2.64689923

Light Crude 1 2.55987776
US Copper 1 2.52091147
UK Copper 1 2.39170158

Silver 1 2.27630636
SoyBean 1 2.18569361

Corn 1 2.14969241
Gold 1 2.13325709

SoyOil 1 1.97115158
Wheat 1 1.90001059
Gasoil 1 1.88942044

US Natural Gas 1 1.3720924
UK Natural Gas 1 1.04974776

SP500 1 1
USD EUR Fx Rate 1 0.9630333

Eurodollar 1 0.96096818

The degree of the nodes counts the number of direct neighbours that
they have. But this is not enough, since indirect connections also matter, as
a path in the PC graph means there is a nonzero unconditional correlation
between the two extremities of the path. Hence, the total communicability
centrality measure accounts for (infinitely) further "neighbours", in the sense
that it accounts for every possible path between any two nodes, which are
weighted (to dampen the influence of further neighbours). Therefore, if the
graph consists of three components, the centrality of the nodes will represent
their centrality only in their component.
Table 4 displays the total communicability centrality measure computed on
this graph. We note that the heating oil has the largest degree (4) and is also
the most central market, followed by the brent and WTI, which have a strong
connection. Hence, these markets are the most susceptible to influence the
others, but since the sectors are separated, the influence would be limited to
energy markets.
In the agricultural sector, while corn has a larger degree (3 vs. 2), soybean is
the most central, closely followed by corn. This result shows the importance
of accounting for indirect neighbours.

20



Finally, in the metals/financial component, the copper markets have the most
potential for information propagation, which can be explained by their strong
link and their further position to the link of negative PC between eurodollar
and USD/EUR exchange rate. This link affects their centrality, making them
less central than even the S&P500, which does not have neighbours, meaning
that they probably receive the shocks rather than drive them.

5.1.2 In 3D

Figure 4: Partial correlation graph in 3D
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Figure 4 presents the estimated partial correlation graph on the whole
sample, in three dimensions. Adding the maturity dimensions, what is strik-
ing is that the graph has a single component (all nodes are present) instead
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of several ones as in the spatial dimension only. Hence, working on com-
modities, it seems crucial to include the maturity dimensions, as they are
the actual connecting variables. This graph means that all those markets
are integrated (prone to systematic shocks) and that diversification benefits
are actually much lower... But this integration is quite diverse: PCs range
from -0.24 to 0.75 with an average of 0.16 and most of them (72%) are posit-
ive. The nets algorithm filtered 88% of the PC coefficients. This PC matrix
translates into a full unconditional correlation matrix, with coefficients ran-
ging from -0.82 to 0.99 with an average of 0.10 (only 60% are positive). We
see here the effect of other variables on the unconditional correlation coeffi-
cients, which have a much larger amplitude than the PCs.

Markets are again clustered into sectors and here, finance and metals
are in the middle of energy and agriculture. Their position may make them
primary sources of systemic risk as they may drive the returns of the whole
system. An exception is the US natural gas markets, which seems to connect
only with metals instead of other energy markets. There are some natural
connections between natural gas and copper, for example the usage of copper
pipes to transport natural gas. There are also some economic ones: construc-
tion may require natural gas to heat housing, offices, etc., economic activity
requires electricity, which may be produced with natural gas. Nevertheless,
considering the seasonality of the natural gas prices, such connections may
not hold at a daily frequency, as we can see from the coefficients, which are
close to 0 (less than 0.03 in absolute value). It may mean that we need to
filter more aggressively.

Table 5 presents the 10 most and least central markets according to the
total communicability centrality measure. The most striking result is that
the 12-month S&P futures contract (not the spot) is the most central one,
confirming the observation of its position in the graph. This result naturally
raises concerns of potential shocks led by financial markets in this system; we
can thus look into it more particularly. Its maximum PC is around 0.28, so
its influence is not over its neighbours but further down the paths. Neverthe-
less, the differences in centrality values are not very large until we reach the
bottom of the ranking (so the system is highly integrated); the influence of
the S&P500 futures may not be that much larger than others. In particular,
we see that all 4 sectors are represented at the top, with four ranks taken by
energy markets, three by metals, two by agricultural markets and only one
for financial markets.
Medium- and long-term futures seem to be at the core of the system, con-
veying and receiving the most information contemporaneously, compared to
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Table 5: Communicability centrality of the 10 most (left) and least (right)
central markets (from high to low) in the reference graph of partial correla-
tions in 3D

Centrality

SP500 3 2.84667941
Gasoil 2 2.81147241
Soy Oil 2 2.8034704

WTI 2 2.77946501
Silver 3 2.77499497

US Copper 2 2.77100391
Brent 2 2.76630783

Soy Bean 2 2.76122455
Heating Oil 2 2.76078463

Silver 1 2.7540656

Centrality

Wheat 3 2.4987086
Soy Bean 1 2.46805167

US Natural Gas 1 2.46415903
Gasoil 1 2.46101264

US Natural Gas 3 2.16668475
Eurodollar 1 2.07323956
Eurodollar 3 2.01416571

UK Natural Gas 1 1.98864143
UK Natural Gas 2 1.86925835
UK Natural Gas 3 1.13756682

spot markets. This would mean that futures markets indeed are dominant
in terms of price discovery. Only one spot market is in the top 10: silver.
Then, investigating the maximum PC of silver contracts, we find that they
are close to 0.5, larger than those of the S&P500 futures, but still not the
largest ones in the system. In conjunction with degree centrality, the influ-
ence of that front-month contract (silver) is not only direct, it can also easily
reach infinitely further nodes. Moreover, silver also has another contract in
the top, its 12-month one, making it very influential: shocks from either its
spot or futures markets could drive other markets and lead to systematic
shocks. This central position in the system is economically reasonable and
meaningful. Silver is very close to gold as they have similar uses (jewelry,
electronics, reserve of value, etc.) and also to industrial metals, as we found
in Section 4. Its price is thus related to business cycles, as are those of energy
markets for example, making the connection with the other sectors.
If we now look at the least central markets, we find many energy markets,
more particularly, most of the natural gas contracts. These natural gas
markets are particular as their storage is difficult or costly, not allowing
to dampen their seasonality. The links in their close neighbourhood appear
thin on the graph, meaning very low PCs, which may explain their low cent-
rality, even though the UK natural gas contracts appear around the "center"
of the graph. The same holds for the 12-month eurodollar contract, which
even has a quite high degree (13, second after the front-month silver, which
has 15) and its PCs range from -0.08 to 0.52 (with 4 negative coefficients).
If the focus is only on the transmission of information, it could be more rel-
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evant to conduct this analysis with the absolute value of the coefficients to
assess the amplitude of transmission instead of allowing for negative coeffi-
cients mitigating the influence of positive ones. It is not the purpose of this
paper, but needs to be investigated in the future.

Partial correlation graphs are thus very rich in information, both visu-
ally and quantitatively. They allow to identify integration/diversification in
terms of number of components, number of edges and weights of these edges.
Identifying the most central nodes tells us which contracts/markets are the
most influential, influenced or informative in the system and comparing the
centrality or PCs of contracts from a same market can also hint at the dom-
inant one in terms of price discovery.
Another way to find evidence of information/shock transmission is to study
the Granger causality links, indicating a temporal transmission instead of a
contemporaneous one.

5.2 The Granger causality graph

Since the AR coefficients are directly related to the notion of Granger caus-
ality, they first tell us whether some returns are Granger-caused by others
(nonzero AR coefficients). They also inform us on the amplitude of this in-
fluence (autocorrelation is also allowed), we can see this as a kind of daily
propagation of shocks and information.
Several measures derived from the graph can be useful in assessing systemic
risk (propagation risk). The number of clusters, of nodes and of links will
tell us the range of the propagation, whether it is widespread ("marketwide",
"sectorwide", systemwide) or if it is contained within a subset of variables.
The average AR, minimum AR and maximum AR will tell us the possible
amplitude of this propagation, whether it is positive or negative.
In addition, we can study the centrality of the nodes, to quantitatively assess
which ones will be propagating information the most (which may need mon-
itoring), and which ones the least, but considering that there are few links,
it may not be necessary.

5.2.1 In the spatial dimension

It seems like there is not much Granger causality in the spatial dimension.
Figure 5 shows the estimated Granger causality graph (from the AR matrix).
Only two links, both positive, seem relevant when using our whole database:
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Figure 5: Granger causality graph in the spatial dimension

Full sample Spatial Granger causality graph
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one from heating oil to gasoil (for 0.18) and one from US natural gas to UK
natural gas (0.11).
The latter link is natural, as it would reflect the difference of trading hours
(the US market closing after the UK market, information of the day in the
US market is incorporated the following day in the UK market). The inverse
information transmission is not seen, as it should appear in the contempor-
aneous correlations instead of here. The former link would be reflecting the
same phenomenon (gasoil being quoted in EU). What is strange is that it
does not show for copper (seen in Section 4) or oil markets. For the latter
though, there has been a decoupling in the recent years, which may explain
the absence of propagation.
Naturally, if we look at the centrality of this graph, the nodes influencing the
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others are the most central ones, i.e. heating oil and US natural gas here,
though the influence is limited.
Thus, there is not much propagation risk in the spatial dimension at a daily
frequency, meaning that instead most of the dependence occurs contempor-
aneously, as integration, or maybe that it occurs at longer lags.
Let us check what happens when we incorporate the maturity dimensions too.

5.2.2 In 3D

Figure 6: Granger causality graph in 3D
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When including maturities in the system, the resulting Granger causal-
ity graph in Figure 6 remains quite simple but adds interesting features to
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the spatial dimension. From that dimension, only the link from US nat-
ural gas to UK natural gas remains. Several other contracts join in and
influence this spot UK natural gas. Its neighbours are: spot US natural
gas (0.1210), spot gold (-0.0023), 3-month US copper (-0.1004), 3-month sil-
ver (0.0686), 3-month brent (-0.0404), 12-month US copper (-0.0077) and
12-month USD/EUR exchange rate (0.0724). Though their influence is not
homogeneous (some have a negative influence, others have a positive one), it
is relatively low, the most important one in absolute value still being from
the US natural gas (0.1210). So here again, propagation risk is limited too.
But why would metals futures markets influence natural gas spot markets
the following day? There does not seem to be a reasonable explanation for
these daily propagation links, except for US natural gas to UK natural gas,
though some of these metals are used in natural gas transportation, hence
information of future pipe or building constructions may be incorporated into
spot natural gas prices...
We also find more economically sound links, from the 3-month US natural
gas to 3-month UK natural gas and from 3-month eurodollar to 12-month
eurodollar, but both influences are very limited (0.0155 and 0.0158 respect-
ively).
Finally, in terms of centrality, as in the spatial dimension, the nodes influ-
encing the others are the most central ones and here the UK natural gas is
obviously the one receiving the most influence.

We will then analyse these different measures dynamically, around sev-
eral events of interest, but will also briefly look at the overall picture (their
evolution over the years).
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6 Shocks and propagation, dynamic analysis
To conduct a dynamic analysis, our only option is to have recourse to rolling
windows. We thus use a window of 252 observations, corresponding to ap-
proximately 1 trading year. We computed all the above mentioned measures,
rolling over our whole sample and provide the most interesting ones in Ap-
pendix C, giving the bigger picture for analysing where the events lie. In
addition to the previous measures, in a dynamic setting, we can also assess
the stability of the graphs by looking at the survival ratio of the graph, com-
pared to the reference graphs or the graphs of the previous day for example
(see Figure 13 in Appendix C).

To give an overview, before 2004, there was basically no propagation in
the system. In terms of integration, the number of components varied, but
was over 4 (the number of sectors) and as high as 12 (having 17 markets).
This would indicate that most markets were not even clustered into sectors,
components being potentially futures with the same underlying or very sim-
ilar ones (e.g. brent and WTI).
After the beginning of the financialisation, we find increasing propagation
and integration, with more links and larger averages in both cases. There
also seems to be a structural break around the beginning of the subprime
crisis, leading to an accelerated integration, which peaked shortly at the end
of 2008. The single component in the PC graph indicates that the system is
fully integrated and markets could have potentially experienced simultaneous
shocks...

We retain several dates to analyse: from the data, we retain the minimum
and maximum observed return for the spot S&P500 index, respectively 2008-
10-09 and 2008-10-28 (because on the day right after each observation, many
commodities experienced extremum return too). We will also study what
happens around the beginning of the subprime crisis (2007-08-09), the de-
fault of Lehman Brothers (2008-09-15) and the Flash Crash (2010-05-06)
since they are financial events that may have affected the system.
Please note that for the animations to play, you need to use Adobe Acrobat
Reader or similar software (they do not work with Preview on Mac OS).

6.1 The beginning of the subprime crisis (2007-08-09)

One of the dates that have been identified as the beginning of the subprime
crisis is August 9, 2007. On that day, BNP Paribas stopped the valuation
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(and subscriptions and redemptions) of three of its funds due to "the complete
evaporation of liquidity in certain market segments of the U.S. securitization
market" (NYT 2007-08-09)1. We will thus look at how our graphs (Figures
are available upon request, due to their size) and measures (Appendix C)
behave around that date.

As in the Granger reference graphs, the UK natural gas receives inform-
ation from metals markets (which is strange) and from the US natural gas,
though there are only 4 of the 7 (reference) relevant links to UK natural gas.
The front-month soybean contract oddly joins on 2007-08-13 and the silver
contract goes away on 2007-08-21, after central banks have increased their
support and lowered their rates. Again, most of the Granger causality links
are weak and do not have reasonable economic foundation, hence may not
be relevant, except for regulation.
In the PC graph, markets are highly integrated, forming almost a single com-
ponent. They are also clustered into sectors overall, with metals markets in
the middle and with the exception of the gasoil, US natural gas and eurodol-
lar (the S&P500 also has an unstable connection). The US natural gas is a
peculiar market, as evidenced by Lautier and Raynaud (2012). With the ad-
dition of metals markets compared to their work, these natural gas contracts
behave erratically and seem to separate this market from other energy mar-
kets. That market connects rather weakly to silver, gold or copper markets,
which may be natural due to the use of these metals in some natural gas
transportation systems. Interestingly, the gasoil contracts followed the same
behaviour and even became temporarily segregated from the large compon-
ent.
Another particularity is that the front-month eurodollar contract is not part
of this graph around this event and other eurodollar contracts were even
separated from all other contracts on 2007-07-25. Around that time, the
short-term rate was constant, explaining the conditional independence with
all the other variables in the system. The range of partial correlations fluc-
tuates quite a lot until one week before the event. Afterwards, there is a
relatively large drop (-0.2 to -0.3) in the minimum partial correlation from
2007-08-20 to 2007-08-22, while the gasoil market is living on its own and
central banks were supporting financial markets.

Around the beginning of the subprime crisis, however, the gold contracts
have taken the role of most connected nodes (instead of silver). Since they

1http://www.nytimes.com/2007/08/09/business/worldbusiness/09iht-
09bnp.7054054.html
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play a role of reserve of value, we naturally find that 60-75% of their links
are negative partial correlations. Their PCs are in general very low in ab-
solute value, except for those with other metals. Silver markets are not as
important in terms of reserve of value, but still have many negative partial
correlations with other markets (81% and 83% of their links for the 3-month
and 12-month respectively). Nevertheless, looking at the rankings provided
by the total communicability centrality, the 12-month S&P500, which seems
peripheral, was the second most important contract on 2007-07-25 and be-
came first the following day. Other important contracts are naturally mainly
metals, at the center of the graph, of the economy (industrial metals) and
due to their role as reserve of value. In terms of total communicability, the
trend is negative around the beginning of the subprime crisis, but looking at
the bigger picture in Appendix 12, it explodes very early after. At that time,
markets were highly complex, with intricate instruments, connections, etc.
Few people anticipated how the markets would move and it took time for
agents to figure out what was happening and it may explain the lag between
the event and the subsequent burst in integration.

Overall, we do not find evidence of substantial systemic risk. Neverthe-
less, some indicators point to potential vulnerability to systematic shocks
coming from stock markets: the presence of a large component in the PC
graph, meaning that the system is integrated, partial correlations ranging
from -0.3 to more than 0.9 and the S&P500 being the most central contract
in the system...

6.2 The default of Lehman Brothers (2008-09-15)

Lehman Brothers, one of the most important derivative dealers at that time,
faced tremendous difficulties, until it had to default on 2008-09-15. This
event has triggered the global financial crisis, which has spread to economies
worldwide and thus, becoming a systemic event. Many interconnections were
neglected, leading to largely unexpected losses for many entities in different
sectors and huge commodity price drops. We thus want to analyse what
happened around that date and other subsequent events.

We find overall two components in the Granger causality graph: one
revolving around the UK natural gas, as usual, and one around an agricul-
tural market (wheat or soybean). The latter component is dominated by
the 12-month gold contract, which positively influences the 12-month wheat
until Lehman Brothers defaults on 2008-09-15, to then turn to the front-
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Figure 7: Granger causality (above) and partial correlation (below) anim-
ated graphs on the day of default of Lehman Brothers

The shape of the nodes represents their sector: circles for Finance, rectangles for Energy,
ellipses for Agriculture and squares for Metals, with details of each market on the figure
(different colours). The colour of the edges represents the sign of the weight/dependence:
grey for positive, violet for negative. The size of the nodes represent their degree: the
bigger the node, the higher its degree. The width of the edges represent the absolute value
of their dependence: the wider the edge, the higher the dependence (in absolute value).
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month soybean contract (negative influence). There is no explanation for
this Granger causality, which thus may be due to financial activity. From
2008-09-19 on, the 12-month eurodollar becomes positively influenced by this
same gold contract. Financial agents may have been looking for safety in the
longer contracts at that time, investing in both reserves of value. The former
component sees the WTI, brent and/or silver (various maturities) influence
the UK natural gas. The links to the WTI and silver are natural due to time
difference and their economic relationships. The connection to the brent can
also be related to their economy, but the time lag (one day) and maturities
(12-month brent and front-month UK natural gas) do not really make sense
and may be caused by financial interferences.

The PC graph still has a single huge component, but sectors are all
scattered and with a slightly smaller range of partial correlations (from -
0.3 to less than 0.9). The maximum partial correlation seemed to decrease
steadily, but skyrockets back on 2008-09-23, just one day after the G7 com-
mits to protect the financial system. This announcement may have reassured
financial agents that the crisis may then be contained and may have sustained
their risky activities.
In terms of centrality, gold, silver, WTI and USD/EUR exchange rate have
the highest degrees and are at the center of the graph. The total commu-
nicability centrality gives overall the same results, but also allows to see the
substantial change that occurred on 2008-09-19. On that day, the 3-month
maturity eurodollar contract went from 26th to 2nd most important con-
tract (after the 12-month S&P500) and total communicability of the network
spiked, so information could flow more easily. By acting on this contract, reg-
ulators may have been able to mitigate the effect of the default of Lehman
Brothers and its subsequent cascade effects. In addition, the front-month
USD/EUR exchange rate contract also became quite important in the sys-
tem (from 28th on 2008-09-11 to 9th on 2008-09-19), showing that exchanges
between countries (capital reallocations) may have driven the returns in the
system and may even have propagated the crisis. Regulators could also have
intervened on these currency markets to try to avoid too much reallocation.
Other contracts got to lower ranks accordingly, but the two shortest matur-
ities of gold contracts in particular became less important (even if the second
one has the highest degree around the end of the study period). This may
not be that counterintuitive, as gold would be anticorrelated to procyclical
assets and relevant as an alternative mostly for financial investors.

All in all, markets are highly integrated (they form a single component in
the partial correlation graph). There may have been capital flows between
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countries and/or assets at play around the demise of Lehman Brothers, which
may have spread the shock. Nevertheless, there is no significant sign of po-
tential for daily propagation, since the number of Granger causality links and
their coefficients are low.

6.3 The lowest return on S&P500 (2008-10-09) (over-
lapping with Lehman)

We chose to study this event, because we noticed in the data that all the
S&P500 contracts experienced their minimum return (going down by at least
-7.23%) on that day and that some commodities experienced their minimum
(or very infrequent) return the following day, on 2008-10-10. 33 of our 51 con-
tracts had 1% negative shocks (observed), among which 10 are their minimum
in our sample: USCu1, USCu3, UKCu2, UKCu3, H.O.1, Brent1, Brent2,
WTI2, Soyoil1 and Soybean3. We thus wanted to check whether this was
due to propagation from the S&P500 or not.

Unfortunately, the S&P500 does not appear in the Granger causality
graphs around that day, so it does not explain what was observed. Never-
theless, there are more propagation links on 2008-10-09 and 2008-10-10 than
before. The link from 12-month gold to 12-month eurodollar is still here and
its coefficient increased to 0.20 (4 times larger than the maximum on the
day before...). In addition, the 3-month UK copper joins to influence the 12-
month eurodollar contract negatively (-0.11) and the 3-month eurodollar one
positively (0.02). These low coefficients and their later decrease in absolute
value are again pointing to potentially financial links.

The system still forms a single component in the PC graph and sectors
are still scattered, but the USD/EUR exchange rate has made its way to the
center of the graph (and the front-month made it to the top of the central-
ity ranking), with silver and gold. As seen for Lehman Brothers, this may
mean that capital flows have driven most of the returns, with these two pre-
cious metals being reserves of value. Again, the 12-month S&P500 was also
among the most important contracts, but not the spot. They had a 0.6076
PC though, so they still could have been the source of the shocks on that
day. The following day, 2008-10-10, it was slightly lower, at 0.6010, but can
still explain why many commodities experienced their minimum return, as
the S&P500 crashed again. Coefficients still range from about -0.2 to 0.9,
but with a temporary drop in the minimum starting on the day of the event
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Figure 8: Granger causality (above) and partial correlation (below) anim-
ated graphs on the day of lowest return of the S&P500

The shape of the nodes represents their sector: circles for Finance, rectangles for Energy,
ellipses for Agriculture and squares for Metals, with details of each market on the figure
(different colours). The colour of the edges represents the sign of the weight/dependence:
grey for positive, violet for negative. The size of the nodes represent their degree: the
bigger the node, the higher its degree. The width of the edges represent the absolute value
of their dependence: the wider the edge, the higher the dependence (in absolute value).
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(2008-10-09). Finally, total communicability dropped on 2008-10-09 and re-
covered slightly the following day.

In the end, we find that in those troubled times, markets have been
largely changing (as seen with the centrality measure), but the lowest return
observed on the S&P500 on 2008-10-09 did not affect those of commodit-
ies the following day. The explanation/hypothesis may be instead that the
following crash of the S&P500 on 2008-10-10 has driven the returns in the
system, as the 3-month contract on S&P500 seems to be an important source
of information in the system (very central).

6.4 The largest return on S&P500 (2008-10-28) (over-
lapping with minimum S&P500)

The S&P500 maximum returns occurred (on 2008-10-28, up by more than
10.24%) in expectation of imminent rate cuts by central banks. On the follow-
ing day (2008-10-29), 35 contracts experienced 1% positive shocks (observed),
among which USCu1, USCu2, UKCu1, UKCu2, UKCu3, Silver1, Silver2,
Silver3, Soyoil1, Soyoil2, Soyoil3, Wheat1, Soybean2 and Corn3 experienced
their maximum return over our sample. Almost all markets experienced im-
portant returns (positive or negative), except for the UK natural gas. In
particular, the returns on S&P500 were this time (2008-10-29) in the 10%
bottom quantile, making the hypothesis of it driving the others not possible
in this case. In addition, returns on the eurodollar and gold contracts were in
the 5% quantile, respectively bottom and top, which also diverges from their
positive relationship in the previous case. We thus wanted to assess whether
the shock financial equities propagated this time to those commodities and
other assets.

Figures are available upon request, due to the large size of this file. Again,
in terms of propagation, the S&P500 does not appear in the Granger causal-
ity graph. And around this event, the graph is rather stable, with a negative
link from front-month silver to 12-month eurodollar appearing and disap-
pearing. The average coefficient was slightly positive but became negative
after 2008-10-23 (never more than 10% in absolute value), with very little
change. The propagation links do not have any meaningful economic explan-
ation and would thus again be financial links.
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As for the PC graphs, markets are still integrated (single component)
and seem to move around in the graph, with a widely spread energy sector
(crude oils stand around the middle and meddle with other sectors). For ex-
ample, on the day of the event (2008-10-28), all sectors but energy seem well
separated. While the S&P500 nodes seem at the periphery of the graph, its
12-month contract is still among the most central (though it is only connected
to S&P500 contracts and with PCs between 0.5 and 0.56), with silver, gold
and the exchange rate. But on the following day, when some commodities
experience their maximum return, all sectors are intertwined and identifying
the center of the graph is more difficult. Looking at the total communic-
ability centrality measure, we find that precious metals and exchange rate
markets have been very important on that day and experienced large returns,
which, instead of equity markets, may have driven the returns on other com-
modities. The communicability in the graph indicates that integration has
been increasing in trend over this period, probably due to the support an-
nouncements by regulators and capital flows to safe assets.

To summarise, the highest return observed in our sample for the S&P500
does not seem to contribute to the highest return observed for several com-
modities on the following day through propagation. Instead, we explain the
positive shocks on 2008-10-29 on commodity prices by the returns on pre-
cious metals and exchange rate and their role in seeking safety during crises.

6.5 The Flash Crash (2010-05-06)

The Flash Crash corresponds to a financial event occurring on the e-mini
S&P500 futures (that we have in our sample), at that time for maturity
June 2010 (our SP500 2). There has been a sell order for 75,000 contracts,
corresponding to around 4 billion dollars, which has triggered many reactions
from other trading algorithms. Most of the losses were recovered quickly, but
some equities were still impacted even after the end of the day. We thus ex-
amine whether this few-hour financial "shock" could have had some impact
on the real economy, through commodity futures.

On the day of the Flash Crash, the Granger causality graph has many
more links than during our other events of interest and looks quite different
from our reference graph. The S&P500 is still not present on the following
day, so it may not have triggered propagation to commodities. Though this
event occurred on the front-month E-mini S&P500 futures contract, its daily
return on that day was -3.63%, while those of the front-month and 3-month
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Figure 9: Granger causality (above) and partial correlation (below) anim-
ated graphs on the day of the Flash Crash

The shape of the nodes represents their sector: circles for Finance, rectangles for Energy,
ellipses for Agriculture and squares for Metals, with details of each market on the figure
(different colours). The colour of the edges represents the sign of the weight/dependence:
grey for positive, violet for negative. The size of the nodes represent their degree: the
bigger the node, the higher its degree. The width of the edges represent the absolute value
of their dependence: the wider the edge, the higher the dependence (in absolute value).
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eurodollar contract were more than 30% (the two interest rates increased from
5.25 bp to 7.10 bp). These returns do not seem to come from propagation,
since other markets contributed only +0.009% and +0.039%. The 12-month
eurodollar (which receives the most from others) seems to behave differently
as we observe a 1.81% return, while the observations of the previous day
contributed -0.86%. Propagation risk has thus increased substantially on the
day of the Flash Crash, but to a long-term eurodollar contract, which may
not present too much direct importance in terms of systemic risk.

In terms of partial correlations, the corresponding graph still consists of
a single component, but there are many more links than the other events, as
can be seen in Figure 12. The metals and financial sectors are at the center of
the graph and intertwined, with gold, silver and exchange rate being the most
connected markets. Energy markets are also scattered and among the most
central nodes (still with the 12-month S&P500 at the top of the ranking),
while the agricultural sector is still clustered. Before the day of the event,
the number of links in the graph increases, being mostly negative partial cor-
relation links. It hence makes the average partial correlation decrease, but
we also find a large increase in the maximum partial correlation on the eve
of the Flash Crash (from 0.81 for Brent1-Brent2 to 0.93 for WTI1-WTI2),
which could raise concerns about simultaneous shocks again since they are
among the most central nodes.

Around the Flash Crash, markets seem to have integrated a lot as sectors
are not as clearly separated as before in the PC graph. This goes with a large
increase of the range of dependence, which in turn increases the risk of sys-
tematic shock. In addition, relatively many propagation links exist at that
time, also largely increasing their influence in absolute value, which means
that propagation risk is also larger, but did not seem to present a substantial
risk.

7 Conclusion
The evolution of commodity prices since the early 2000s, raised concerns,
since they seem closely related to equity prices or indices. The consequences
of the financialisation of commodity markets could be an increased influence
of financial agents on commodity futures prices, which may in turn affect
commodity spot prices. Since these (futures and spot) commodities are used
by individuals in their daily life, by firms in their economic activity or by
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financial agents in their portfolios, the risk of affecting their prices would
affect the real economy, hence falling under the scope of systemic risk.
The literature on the financialisation of commodities has largely studied
the (contemporaneous) correlations between commodity returns and finan-
cial asset returns. However, there may be two temporalities for the in-
fluence/dependence: contemporaneous (integration) or over time (propaga-
tion). For example, we observe that some commodity markets experienced
their extremum return on the day after the S&P500 experienced its extremum
over our sample (which occurred in October 2008, after the default of Leh-
man Brothers).
A VAR framework is thus intuitive and suited for distinguishing propagation
and integration. We thus rely on the algorithm of Barigozzi and Brown-
lees (2017), which estimates the sparse AutoRegression (AR, Granger caus-
ality) and Partial Correlation (PC) matrices in a single step, providing sub-
stantial advantages. The former matrix gives the propagation structure in
the system while the second gives the integration structure. Both can be
represented as meaningful graphs and can be quick risk inspection tools.
We claim that the maturity dimension (using futures of different maturities)
is necessary for assessing systemic risk as futures markets are a place for price
discovery, according to the literature. We indeed find in our spatial reference
graph that when the maturity dimension is excluded, the different sectors
are not connected, i.e. they do not exhibit common factors (in particular,
financial markets and all commodity markets). On the contrary, once we
include the 3-month and 12-month contracts in our 3D reference graph, all
the sectors connect: they are highly integrated and thus present higher risk.
To study propagation, in particular the aforementioned dates of extrema,
we conduct a dynamic analysis using a one-trading-year rolling window. We
find that there was little propagation at play and that the S&P500 contracts
do not even appear in the Granger causality graph. The extrema observed
for some commodities the day after the extrema of the S&P500 are thus
not due to propagation. Instead, integration was dominant, but the S&P500
is only responsible for the negative shocks as its contracts were among the
most central ones and they experienced negative shocks on day after their
extremum. On the contrary, we find that after the day of their maximum
return, they did not experience large shock, but a small negative shock. This,
in addition to the centrality and positive shocks on precious metals and ex-
change rate, leads to the conclusion that the search for safety drove those
maximum returns.
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Appendices
A Correlations vs. partial correlations
When we want to assess the dependence between two random variables, the
linear correlation coefficient is commonly used, even though it has flaws. One
of them is that it may be inflated if we do not take into account variables that
may have an effect on both variables under consideration. More formally, if
we take a set of three random variables X, Y, Z, we can compute their un-
conditional correlation coefficients, in their unconditional correlation matrix
ρ:

ρ =

 1 ρX,Y ρX,Z
ρX,Y 1 ρY,Z
ρX,Z ρY,Z 1

 (3)

If we want to assess the dependence between X and Y and just look at
ρX,Y , we may get a biased result. Indeed, what if Z is a common factor for
these two variables or an intermediary variable between the two? It would
create a "artificial" unconditional correlation ρX,Y . Hence, we need to filter
out the influence of the variable Z from the dependence between X and
Y . The partial correlation CX,Y between the variables X and Y precisely
serves this purpose: it corresponds to the linear correlation between these
two variables, conditional on the other variables, here Z. We would thus get
the following partial correlation matrix C:

C =

 1 CX,Y CX,Z
CX,Y 1 CY,Z
CX,Z CY,Z 1

 =

 1 ρ(X,Y )|Z ρ(X,Z)|Y
ρ(X,Y )|Z 1 ρ(Y,Z)|X
ρ(X,Z)|Y ρ(Y,Z)|X 1

 (4)

where |A denotes the conditionality on variable A ∈ {X, Y, Z}. This partial
correlation matrix can be easily obtained from the unconditional correlation
matrix: we take the inverse of the unconditional correlation matrix ρ (or
covariance matrix), then normalise it (by dividing each term by the corres-
ponding diagonal terms) and finally multiply by -1 as follows:
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where D = ρ−1 (or the inverse of covariance matrix). The partial correlation
matrix is to the concentration matrix (inverse of the covariance matrix) what
the correlation matrix is to the covariance matrix. We can also obtain it by
regressing each variable on the others and after some computations on the
regression coefficients.

Let us take the three eurodollar contracts from our 3D reference graph
(Figure 4) as an example. If we compute the correlation matrix ρ for these
three time series (IR1, IR2, IR3), we get very high correlation coefficients:

ρ =

 1 0.9994 0.9424
0.9994 1 0.9533
0.9424 0.9533 1

 Γ =

 0.0003615 0.0003557 0.0002504
0.0003557 0.0005651 0.0004958
0.0002504 0.0004958 0.0011149


(7)

We note that the highest coefficients are, in descending order, the one between
IR1 and IR2 (0.9994), the one between IR2 and IR3 (0.9533) and finally the
one between IR1 and IR3 (0.9424). These values may be inflated by the
influence of the variables not involved in each pair. Let us denote F the con-
centration matrix (inverse of the covariance matrix Γ, also called information
or precision matrix). If we look at the partial correlations by normalising the
concentration matrix, we find the following:

C =

 −1 0.7403 −0.1716
0.7403 −1 0.5172
−0.1716 0.5172 −1

 F = Γ−1 =

 7838.30 −5507.77 632.03
−5507.77 7061.22 −1807.80
632.03 −1807.80 1730.46


(8)

We see that after conditioning on all the other variables in our system (of
51 variables), the linear dependence between IR1 and IR2 is only CIR1,IR2 =
0.7403 now instead of ρIR1,IR2 = 0.9994. Hence, the difference of 0.2591 was
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due to the influence of other variables. The same applies to the other coeffi-
cients, but we interestingly find that the partial correlation between IR1 and
IR3 is actually negative, CIR1,IR3 = −0.1716, while the unconditional one
was ρIR1,IR3 = 0.9424. Therefore, if we do not control for the influence of
other variables that may alter the unconditional correlation matrix, we may
get different results.

In addition, the concentration matrix F encodes the conditional depend-
ence between pairs of variables in a multivariate normal distribution. Hence,
an entry Ci,j of the partial correlation matrix (which has the same 0s as the
information matrix) is equal to 0 if and only if Xi and Xj are independent,
conditional on {Xk}k 6=i,j. Though the multivariate Gaussian distribution is
a strong assumption to make in empirical studies, it is a common one.
We can thus build a graph based on those coefficients, with a link when the
partial correlation is nonzero as we do in this paper. Nevertheless, even if
some variables are conditionally independent, they can still be uncondition-
ally dependent. Let us consider three variables X, Y, Z again. If their partial
correlation graph is

X −−Y −−Z
then the partial correlation between X and Z is 0, but their unconditional
correlation is not (see Eq. 12 and 13 for a numerical example).
This feature of paths of partial correlations can highlight the presence of
potential common factors when some nodes in the graph form a separate
component, as in the reference partial correlation graph in the spatial di-
mension, in Figure 3, which we use as a way to visualise and measure the
integration in our system (if different components/sectors start connecting,
they become integrated).

All in all, we choose to work on partial correlations instead of uncondi-
tional correlations for their many benefits, but still come and go between the
two, since unconditional correlations are also useful.

B Explanation of LASSO penalization
Let us consider a simple linear model of the form:

Y = β0 + β1X1 + ...+ βpXp + ε (9)

where Y , the dependent variable, is explained by a constant and p explan-
atory variables {X1, ..., Xp}. If we have a set of data of length n (we have
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n observations of Y , (y1, ..., yn), and the corresponding n observations of
{X1, ..., Xp}, (xi,1, ..., xi,p)i=1..n), we will try to find the parameters (β0, ..., βp)
that will allow the estimated values Ŷ (on the regression line) to be the closest
to the observed Y . Formally, in the case of an Ordinary Least Squares (where
we minimise the sum of squared errors) estimation, the objective function
would be:

min
β0,β1,...,βp

1

2

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

(10)

where j stands for variable Xj and i stands for observation i (of Y or Xj). In
traditional Econometrics works, we do not work in high dimension and have
parameter estimates that can be tested. We rely on these statistical tests to
identify the important explanatory variables of the regressions and analyse
their parameters more particularly.
Penalizing with LASSO would slightly change that objective function by
adding a term (which represents a constraint):

min
β0,β1,...,βp

1

2

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

|βj| (11)

with λ ≥ 0 the penalizing parameter. This parameter basically defines how
much sparsity we want in the parameters: the greater this λ, the more coef-
ficients will be set to 0. Indeed, if coefficients are very small, a large λ
will increase the value of the objective function, so in order to minimise this
function, we should set them to 0, so that they don’t contribute to the minim-
isation problem anymore. Meanwhile, the nonzero parameters are calibrated
at the same time, taking into account the 0s. We should thus obtain more
realistic estimates of those nonzero parameters than if we calibrate the para-
meters first (if it is even possible, since we are in high dimension) and only
keep the statistically significant ones. As we will see below, the estimates for
the nonzero parameters will compensate for setting some parameters to 0.
Other regularizations are possible, but they may not set the small ones to
0. Another famous one is the Ridge regularization, which will provide many
nonzero coefficients, due to the form of the constraint. Figure 10 shows how
these two types of constraints translate into geometry. LASSO penalises the
objective function with an L1-norm on the parameters, |β|, while ridge penal-
ises it with an L2-norm, β2, hence their shape in the figure (square vs. circle
respectively, in blue). If we consider these regularizations as constraints in
the optimization problem, we see in this figure that, on the one hand, the
LASSO constraint will generally give an optimum in a corner of the square,
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setting a parameter to 0 (β1 here). On the other hand, with the Ridge con-
straint, an optimum may be found with both parameters being different from
0.

Figure 10: Geometry point of view, difference between LASSO (left) and
Ridge (right) prenalizations

The figure was taken from Wikipedia. The red ellipses represent different level ellipses
of the objective function of a least square error minimisation problem. The blue areas
represent the contraints added: square-shaped for LASSO (L1-norm, in the form of |β|,
on the left) and circle-shaped for ridge regularization (L2-norm, in the form of β2, on the
right).

In particular, the partial correlation matrix (or the concentration matrix)
could potentially be sparse, which comforts us in using this approach. It
should at least be sparser than the unconditional correlation matrix, since it
is "polluted" by the influences of all the variables. Applying this penalization
to the calibration of the the concentration matrix F, we would get many 0s,
meaning conditional independence between many variables, after filtering out
the influence of the others.
Let us come back to our example with the three eurodollar contracts (IR1,
IR2 and IR3) from Appendix A. We may wonder whether the coefficient
FIR1,IR3 = 632.0388 (and maybe even FIR2,IR3 = −1807.8044 and FIR3,IR3 =
1730.4653, considering other values are very large) is "normal" or if it is
small enough compared to the others to be set to 0. If we look at their
partial correlations from the whole 51×51 matrix, we get the following PC
matrix CLASSO and concentration matrix FLASSO (which was calibrated with
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LASSO and then the PC was derived from it):

CLASSO =

 −1 0.6548 0
0.6548 −1 0.5211

0 0.5211 −1

 FLASSO =

 6999.69 −4313.20 0.000
−4313.20 6199.35 −1632.13
0.000 −1632.13 1582.37


(12)

Their Looking at the reference graph in Figure 4, we indeed see that there
is no link between these two nodes. Comparing with the partial correlation
matrix (and the corresponding concentration matrix) found in Eq. 8, the
coefficient between IR2 and IR3 is slightly larger when using LASSO (0.5211
vs. 0.5172). The coefficient between IR1 and IR2 is lower when penalizing
with LASSO (0.6548 vs. 0.7403). This may be explained by the 0 set for
CLASSO
IR1,IR3: while it was negative when not using LASSO, to compensate for

this mitigating effect (of the negative coefficient), the dependence between
IR1 and IR2 may have been decreased (or it could have affected other partial
correlations too).
Looking at the corresponding unconditional correlations, we find the follow-
ing matrix (extracted from the 51× 51 matrix):

ρ =

 1 0.9994 0.9424
0.9994 1 0.9533
0.9424 0.9533 1

 ρLASSO =

 1 0.9169 0.8370
0.9169 1 0.9230
0.8370 0.9230 1


(13)

The coefficients are not exactly equal to the ones in the previous section,
without using LASSO (and the ordering is not the same), but are still quite
close. The difference may also be due to some noise in the unconstrained case.

Moreover, applying the nets algorithm of Barigozzi and Brownlees (2017)
applies LASSO penalization to the estimation of both the AutoRegression
and partial correlation matrices in one step. This allows the optimization
to have better convergence properties and allows it to select the parameters
among both AR coefficients and partial correlation coefficients, instead of
selecting the former first and then the latter.

C Measures in the dynamic analysis over the
whole period

C.1 Measures related to the Granger causality graphs
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Figure 11: Measures related to the links of the Granger causality graphs
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The vertical bars represent the events under consideration: red for the beginning of the
subprime crisis, blue for the default of Lehman Brothers, green for the day of minimum
return on the S&P500, orange for the day of its maximum return and violet for the Flash
Crash. The blue line (#Granger links) represents the number of links of propagation.
The yellow line (Average propagation) represents the average value of the propagation
coefficients. Note that when there is no link, the average is NA, hence the discontinuity.
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C.2 Measures related to the partial correlation (Integ-
ration, PC) graphs

Figure 12: Measures related to integration of markets
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The vertical bars represent the events under consideration: red for the beginning of the
subprime crisis, blue for the default of Lehman Brothers, green for the day of minimum
return on the S&P500, orange for the day of its maximum return and violet for the
Flash Crash. The blue line (Total communicability) represents the total of the easiness of
information flow in the system; the values have been normalized by the minimum value to
fit on the same scale. The orange line (%links PC) represents the inverse of the sparsity
in the graph; it gives the proportion of nonzero PC in terms of total links possible (full
graph). The yellow line (#clusters PC) represents the number of factors (components,
clusters) in the PC graph.
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Figure 13: Measures related to the structure of the partial correlation graphs
(3)

The vertical lines represent the events under consideration: red for the beginning of the
subprime crisis, blue for the default of Lehman Brothers, green for the day of minimum
return on the S&P500, purple for the day of its maximum return and orange for the Flash
Crash. The blue line (Reference) represents the proportion of links that are common to
the daily graphs and the reference graph. The red line (Previous graph) represents the
proportion of links that are common to the graph on that day and the graph on the
previous day.
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