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Abstract. We consider the framework of high dimensional stochastic control problem, in which
the controls are aggregated in the cost function. As first contribution we introduce a modified
problem, whose optimal control is under some reasonable assumptions an ε-optimal solution of the
original problem. As second contribution, we present a decentralized algorithm whose convergence
to the solution of the modified problem is established. Finally, we study the application to a problem
of coordination of energy production and consumption of domestic appliances.
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1. Introduction. The present article aims at solving a high dimensional
stochastic control problem (P1) involving a large number n of agents indexed by
i ∈ {1, · · · , n}, of the form:

(1.1) (P1)


inf
u∈U

J(u)

J(u) := E

(
F0(

1

n

n∑
i=1

ui) +
1

n

n∑
i=1

Fi(u
i, Xi,ui)

)
.

The dynamics of the state of each agent Xi,ui is driven by independent Brownian mo-
tions W i (no common noise) so that potential interactions between agents dynamics
is only due to the non anticipative controls ui supposed to be progressively measur-
able w.r.t. to the Brownian noise W = (W i)i∈{1,··· ,n}. We emphasize, the specific
structure of that problem whose cost function is the sum of, on one side, additively
separable terms Fi between agents and a coupling term F0, function of the aggregate

strategies
1

n

n∑
i=1

ui.

1.1. Motivations. This work is motivated by its potential applications for large-
scale coordination of flexible appliances, to support power system operation in a con-
text of increasing penetration of renewables. One type of appliances that has been
consistently investigated in the last few years, for its intrinsic flexibility and potential
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for network support, includes thermostatically controlled loads (TCLs) such as re-
frigerators or air conditioners. Several papers have already investigated the potential
of dynamic demand control and frequency response services of TCLs [21] and how
the population recovers from significant perturbations [3]. The coordination of TCLs
can be performed in a centralized way, like in [8]. However this approach raises chal-
lenging problems in terms of communication requirements and customer privacy. A
common objective can be reached in a fully distributed approach, like in [25], where
each TCL is able to calculate its own actions (ON/OFF switching) to pursue a com-
mon objective. This paper is related to the work of De Paola et al. [4], where each
agent represents a flexible TCL device. In [4] a distributed solution is presented for
the operation of a population of n = 2 × 107 refrigerators providing frequency sup-
port and load shifting. They adopt a game-theory framework, modelling the TCLs as
price-responsive rational agents that schedule their energy consumption and allocate
their frequency response provision in order to minimize their operational costs. The
potential practical application of our work also considers a large population of TCLS
which, contrarily to [4], have stochastic dynamics. The proposed approach is able to
minimize the overall system costs in a distributed way, with each TCL determining
its optimal power consumption profile in response to price signals.

1.2. Related literature. The considered problem belongs to the class of
stochastic control: looking for strategies minimizing the expectation of an objective
function under specific constraints. One of the main approaches proposed in the litera-
ture to tackle this problem is to use random trees: this consists in replacing the almost
sure constraints, induced by non-anticipativity, by a finite number of constraints to
get a finite set of scenarios (see. [9] and [19]). Once the tree structure is built, the
problem is solved by different decomposition methods such as scenario decomposition
[18] or dynamic splitting [20]. The main objective of the scenario method is reducing
the problem to an approximated deterministic one. The paper focuses on high dimen-
sional noise problems with large number of time steps, for which this approach is not
feasible. The idea of reducing a single high dimensional problem to a large number
with low dimension has been widely studied in the deterministic case. In determinis-
tic and stochastic problems a possibility is to use time decomposition thanks to the
Dynamic Programming Principle [1] taking advantage of Markov property of the sys-
tem. However, this method requires a specific time structure of the cost function and
fails when applied to problems for which the state space dimension is greater than
five. One can deal with the curse of dimensionality, under continuous linear-convex
assumptions, by using the Stochastic Dual Dynamic Programming algorithm (SDDP)
[15] to get upper and lower bounds of the value function, using polyhedral approxi-
mations. Though the almost-sure convergence of a broad class of SDDP algorithms
has been proved [17], there is no guarantee on the speed of the convergence and there
is no good stopping test. In [14], a stopping criteria based on a dual version of SDDP,
which gives a deterministic upper-bound for the primal problem, is proposed. SDDP
is well-adapted for medium sized population problems (n ≤ 30), whereas it fails for
problems with magnitude similar to one of the present paper (n > 1000). It is natural
for this type of high dimensional problem to investigate decomposition techniques in
the spirit of the Dual Approximation Dynamic Programming (DADP). DADP has
been developed in PhD theses (see [7], [12]). This approach is characterized by a
price decomposition of the problem, where the stochastic constraints are projected
on subspaces such that the associated Lagrangian multiplier is adapted for dynamic
programming. Then the optimal multiplier is estimated by implementing Uzawa’s
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algorithm. To this end in [12], the Uzawa’s algorithm, formulated in a Hilbert set-
ting, is extended to a Banach space. DADP has been applied in different cases, such
as storage management problem for electrical production in [7, chapter 4] and hydro
valley management [2]. In the proposed paper, in the same vein as DADP we propose
a price decomposition approach restricted to deterministic prices. This new approach
takes advantage of the large population number in order to introduce an auxiliary
problem where the coupling term is purely deterministic.

1.3. Contributions. We consider the following approximation of problem (P1):

(1.2) (P2)


inf
u∈U

J̃(u)

J̃(u) := F0

(
1

n

n∑
i=1

E(ui)

)
+

1

n
E

(
n∑
i=1

Fi(u
i, Xi,ui)

)
.

As a first contribution, this paper shows that under some convexity and regularity
assumptions on F0 and (Fi)i∈{1,...,n}, any solution of problem (P2) is an εn-solution
of (P1), with εn → 0 when n→∞. In addition, an approach of price decomposition
for (P2) is easier than for (P1), since the Lagrange multiplier is deterministic for (P2),
whereas it is stochastic for (P1). Since computing the dual cost of (P2) is expensive,
we propose Stochastic Uzawa and Sampled Stochastic Uzawa algorithms relying on
Robbins Monroe algorithm in the spirit of the stochastic gradient. Its convergence
is established. We check the effectiveness of the Stochastic Uzawa algorithm on a
linear quadratic Gaussian framework, and we apply the Sampled Stochastic Uzawa
algorithm to a model of power system, inspired by the work of A. De Paola et al. [4].

2. General framework. Let (Ω,F ,F,P) be a complete filtered probability
space on which W = (W i)i=1,...,n is a n−dimensional Brownian motion, such that
for any t ∈ [0, T ] and i ∈ {1, . . . , n}, W i

t takes value in R, and generates the filtration
F = (Ft)0≤t≤T . P stands for the Wiener measure associated with this filtration and
F for the augmented filtration by all P-null sets.

The following notations are used:

X := {ϕ : Ω→ C([0, T ],R) |ϕ(·) isF− adapted, ‖ϕ‖∞,2 := E( sup
s∈[0,T ]

|ϕ(s)|2)
1
2 <∞},

L2(0, T ) := {ϕ : [0, T ]→ R |
∫ T

0

|ϕ(t)|2dt <∞},

U := {ϕ : [0, T ]× Ω→ R |ϕ(·) isF− prog. measurable, E
∫ T

0

|ϕ(t)|2dt <∞},

and for any i ∈ {1, . . . , n}, the feasible set of controls is defined by:

(2.1) Ui := {v ∈ U and vt(ω) ∈ [−Mi,Mi], for a.a. (t, ω) ∈ [0, T ]× Ω},

and we set M := max
i∈{1,...,n}

Mi, where Mi > 0. The set of admissible controls is

U := U1 × . . .× Un, whose elements are denoted by u := (u1, . . . , un).
Each local agent i = 1, . . . , n is supposed to control its state variable through the

control process ui ∈ Ui and suffers from independent uncertainties. More specifically,
the state process of each agent, Xi,ui = (Xi,ui

t )t∈[0;T ], for i = 1, . . . , n takes values in
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R and follows the dynamics
(2.2) dXi,ui

t = µi(t, u
i
t, X

i,ui

t )dt+ σi(t,X
i,ui

t )dW i
t , for t ∈ [0, T ], for i ∈ {1, . . . , n}

Xi
0,ui = xi0 ∈ R.

Without loss of generality, the initial states xi0 are supposed to be deterministic.
The process Xi,ui is F-progressively measurable. For all i, F i stands for the

natural filtration of the Brownian motion W i.

2.1. On the well-posedness of (P1). In this section, the assumptions needed
for (P1) to be well posed are studied.

Assumption 2.1. For any i ∈ {1, . . . , n}, the functions µi and σi are continuous
w.r.t (u, x) uniformly in t. In addition there exists Ki > 0 such that, for any t ∈ [0, T ]
and ν ∈ [−M,M ]:
(2.3)

|µi(t, ν, x)− µi(t, ν, y)|+ |σi(t, ν, x)− σi(t, ν, y)| ≤ Ki |x− y|,

|µi(t, ν, x)|+ |σi(t, ν, x)| ≤ Ki (1 + |x|),
for any x, y ∈ R.

Lemma 2.2. Let i ∈ {1, . . . , n} and v ∈ Ui be a control process. If Assumption
2.1 holds, then there exists a unique process Xi,v ∈ X satisfying (2.2) (in the strong
sense) such that for any p ∈ [1,∞):

(2.4) E
(

sup
0≤t≤T

|Xi,v
t |p

)
< C(p, T, x0,K) <∞ .

Proof. The proof for the existence and uniqueness of a solution of (2.2) relies on
[13, Theorem 3.6, Chapter 2]. The inequality is a result of [13, Theorem 4.4, Chapter
2 ].

Let F0 : L2(0, T ) → R̄ and Fi : L2(0, T ) × C([0, T ], R̄) → R be proper and lower
semi continuous functions, and there exists û ∈ U such that:

(2.5) E

(
F0(

1

n

n∑
i=1

ûi)

)
<∞.

Define Gi : L2(0, T ) × C([0, T ]) → R̄ by Gi(z, ω) = Fi(z,X
i,z(ω)). Additional

assumptions are formulated below.

Assumption 2.3. For any i ∈ {1, . . . , n}:
(i) Gi is strictly convex w.r.t. the first variable.
(ii) there exists a positive integer p such that Fi has p-polynomial growth, i.e

there exists K > 0 such that for any xi ∈ C([0, T ],R) and ui ∈ L2(0, T ):
|Fi(ui, xi)| ≤ K(1 + sup

0≤t≤T
|xit|p).

Assumption 2.3.(i) holds in different cases, like in the example below.

Example 2.4. For any i ∈ {1, . . . , n}, there exists gi : L2(0, T ) → R and hi :
C[0, T ] → R such that for any (v,X) ∈ L2(0, T ) × C[0, T ], Fi(v,X) = gi(v) + hi(X)
and there exists five L∞([0, T ]) scalar functions αi, βi, γi, ξi and θi such that for any
(t, ν, x) ∈ [0, T ]× [−M,M ]× R:

(2.6) µi(t, ν, x) = αi(t)ν + βi(t)x+ γi(t) and σi(x, t) = ξi(t)x+ θi(t).
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Then Assumption 2.3.(i) is satisfied if:
(i) gi is strictly convex and hi convex.
(ii) for a.e. t ∈ [0, T ], α(t) 6= 0, gi is convex and hi strictly convex.
Indeed, for any i ∈ {1, . . . , n}, u, v ∈ U, δ ∈ [0, 1] and t ∈ [0, 1], it holds from (2.6)

that Xi,δu+(1−δ)v
t = δXi,u

t + (1− δ)Xi,v
t . If point (i) holds, then:

(2.7) hi(X
i,δu+(1−δ)v) ≤ δhi(Xi,u) + (1− δ)hi(Xi,v).

Assumption 2.3.(i) follows from (2.7) and strict convexity of gi.
Similarly, if point (ii) holds, then the inequality in (2.7) is strict, and Assumption

2.3.(i) follows using also the convexity of gi.

Remark 2.5. If for any i ∈ {1, . . . , n}, Assumption 2.3.(i) holds, then Gi is w.l.s.c.
w.r.t. the first variable. Indeed, Gi as a function of the first variable being convex,
finite valued and bounded on bounded subsets of L2(0, T ) (from the polynomial growth
of Fi and the inequality (2.4)),thus Gi is continuous w.r.t. the first variable.

From now on, Assumptions 2.1 and 2.3 are in force in the sequel.
The following lemma ensures the well-posedness of (P1).

Lemma 2.6. Suppose that F0 is convex. Then J reaches its minimum over U at
a unique point.

Proof. Clearly the control û ∈ U defined in (2.5) is feasible. The existence and
uniqueness of a minimum is proved by considering a minimizing sequence {uk} of
J over U . The set U being bounded and weakly closed, there exists a sub-sequence
{uk`} which weakly converges to a certain u∗ ∈ U . Using Assumptions 2.3.(i)(ii) and
convexity of F0, it follows that lim inf J(uk`) ≥ J(u∗) and thus u∗ is a solution of
(P1). The uniqueness is due to the strict convexity of Gi w.r.t. the first variable.

Remark 2.7. This kind of stochastic optimization problem is illustrated in Section
7 with a problem of coordination of a large population of domestic appliances, where
a system operator has to meet the demand while producing at low cost. The state Xi

t

can represent for instance the temperature or the battery level of the agent i at time t,
and uit its proper power generation or consumption. F0 can be assimilated to the cost
function to satisfy the demand, and for any i, Fi to the cost function connected to the
proper functioning of the TCLs (characterized by individual cost function, comfort
constraints, etc...).

3. Approximating the optimization problem. In this section, the link be-
tween problems (P1) and (P2) is analyzed.

Assumption 3.1. Problem (P2) admits a unique solution.

Notice that by using the same techniques as for Lemma 2.6, one can prove that the
above assumption is satisfied when F0 is convex.

We have the following key result.

Theorem 3.2. Under Assumption 3.1, J̃ reaches its minimum over U at a unique
point, ũ ∈ U , such that for any i, ũi is F i−adapted and thus for any j 6= i, ũi and ũj

are mutually independent.

Proof. Fix i ∈ {1, . . . , n}, since Gi is proper, convex and l.s.c. w.r.t. the first
variable, using Jensen’s inequality we get:

(3.1) E
(
Gi(u

i,W i)|W i
)
≥ Gi

(
E(ui

∣∣W i),W i
)
.
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On the other hand (u1, . . . , un) 7→ F0(
1

n

n∑
i=1

E(ui)) is invariant when taking the

conditional expectation, thus F0

(
1

n

n∑
i=1

E(ui)

)
= F0

(
1

n

n∑
i=1

E
(
E(ui|W i)

))
. From

Assumption 3.1, we know that there exists a solution u∗ to (P2).
We set ũ := (E(u∗ 1|W 1), E(u∗ 2|W 2), . . . , E(u∗n|Wn)). For any i, ũi :=

E(u∗ i|W i) is Fi-adapted. Using the definition of u∗ and (3.1), one can derive that
inf
u∈U

J̃(u) = J̃(u∗) ≥ J̃(ũ).

Let Û be a subset of U associated to decentralized controls, in the sense that:

(3.2) Û := {u ∈ U |ui is F i − adapted for all i ∈ {1, . . . , n}}

From Theorem 3.2, if Assumption 3.1 holds, then:

(3.3) min
u∈Û

J̃(u) = min
u∈U

J̃(u).

Remark 3.3. If Assumption 3.1 isn’t satisfied, we can prove by same arguments
that for any ε > 0 there exists an ε-optimal solution such that the individual controls
are mutually independent.

Lemma 3.4. If F0 is Lipschitz with constant γ, then an optimal solution in Û of
problem (P2) is an ε-optimal solution in Û of problem (P1), with ε = 2γM

√
T/n.

Proof. Indeed, there exists a number γ such that γ > 0 and for all x, y ∈ H1 we
have |F0(x)− F0(y)| < γ‖x− y‖H1 . We set for any u ∈ U :

(3.4) ûi := ui − E(ui).

Using the Jensen and Hölder inequalities, (E|Y |) ≤ (E|Y |2)
1
2 , the fact that for any

j 6= i, ui and uj are mutually independent, and that ui is bounded by M , we have
∀u ∈ Û :
(3.5)

|E

(
F0(

1

n

n∑
i=1

ui))− F0(
1

n

n∑
i=1

E(ui)

)
| ≤ E

(
|F0(

1

n

n∑
i=1

ui))− F0(
1

n

n∑
i=1

E(ui))|

)
≤ γ

n
E(‖

n∑
i=1

ûi‖L2(0,T ))

≤ γ

n
E(‖

n∑
i=1

ûi‖2L2(0,T ))
1
2

=
γ

n

( ∫ T

0

Var(

n∑
i=1

uit)dt
) 1

2

≤ γ

n
1
2

M
√
T .

Let ũ∗ denote a minimizer of J̃ on Û , then using (3.5) for any u ∈ Û it holds:

(3.6) J(ũ∗) ≤ J̃(ũ∗) +
γ

n
1
2

M
√
T ≤ J̃(u) +

γ

n
1
2

M
√
T ≤ J(u) +

2γ

n
1
2

M
√
T .
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Assumption 3.5. F0 is Gâteaux differentiable with c-Lipschitz derivative.

Theorem 3.6. Suppose F0 is convex, then the following ε-optimality results hold:
(i) For any u ∈ U , J̃(u) ≤ J(u).
(ii) Suppose Assumption 3.5 holds, then any optimal solution of problem (P2) is

an ε-optimal solution (where ε = 2cTM2/n) of problem (P1).

Proof. Proof of point (i).
By Jensen’s inequality, we have that:

(3.7) F0(
1

n

n∑
i=1

E(ui)) ≤ E(F0(
1

n

n∑
i=1

ui)), ∀u ∈ U ,

which gives the result.
Proof of point (ii).

Since F0 is convex, differentiable, with a c-Lipschitz differential, one can derive for
any u ∈ Û and a.s.:

(3.8)

F0(
1

n

n∑
i=1

ui)− F0(
1

n

n∑
i=1

E[ui])

≤ 1

n
〈∇F0(

1

n

n∑
i=1

ui) ,

n∑
i=1

ûi 〉L2(0,T )

=
1

n
〈(∇F0(

1

n

n∑
i=1

ui)−∇F0(
1

n

n∑
i=1

E[ui])) ,

n∑
i=1

ûi 〉L2(0,T )

+
1

n
〈∇F0(

1

n

n∑
i=1

E(ui)) ,

n∑
i=1

ûi 〉L2(0,T )

≤ c

n2
‖

n∑
i=1

ûi ‖2L2(0,T ) +
1

n
〈∇F0(

1

n

n∑
i=1

E(ui)) ,

n∑
i=1

ûi 〉L2(0,T ), )

where ûi is defined in (3.4). Taking the expectation of (3.8),

E

(
〈∇F0(

1

n

n∑
i=1

E[ui]) ,

n∑
i=1

ûi 〉L2(0,T )

)
= 0

, and using the mutual independence of the controls and their boundedness we get as
in (3.5):

(3.9)
c

n2
E
(
‖

n∑
i=1

ûi ‖2L2(0,T )

)
=

c

n2

∫ T

0

n∑
i=1

Var(uit)dt ≤
c

n
TM2.

Let ũ∗ denote a minimizer of J̃ on Û , then using (3.3), (3.9) and (3.7), for any u′ ∈ U
we have:

(3.10) J(ũ∗) ≤ J̃(ũ∗) +
c

n
TM2 ≤ J̃(u

′
) +

c

n
TM2 ≤ J(u

′
) +

2c

n
TM2.

Thus for ε = 2cTM2/n, ũ∗ constitutes an ε-optimal solution to the stochastic control
problem (P1).

Proposition 3.7. If F0 is convex, then we have the following inequalities:

(3.11) J(ũ)− J̃(ũ) ≥ J(ũ)− J(u∗) ≥ 0,

where ũ and u∗ are respectively the optimal controls of problems (P2) and (P1).
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Proof. From Jensen inequality and by definition of ũ we have:

(3.12) J(u∗) ≥ J̃(u∗) ≥ J̃(ũ),

therefore from the two previous inequalities and adding J(ũ) we get (3.12).

Remark 3.8. An approximation scheme to compute ũ is provided in Section 5.
The practical interest of inequality (3.11) is that one can compute an upper bound
for the error J(ũ)−J(u∗), that can be automatically derived from this approximation.

4. Dualization and Decentralization of problem (P2). From now on, in
addition to Assumptions 2.1 and 2.3, the assumption that F0 is convex is in force in
the sequel. The problem (P2) defined in (1.2) is dualized in order to decouple the
controls in this problem.

The optimization problem (P2) is equivalent to:

(4.1) (P3)


min

u∈U,v∈V
J̄(u, v),

J̄(u, v) := F0(v) +
1

n
E

(
n∑
i=1

Fi(u
i, Xi,ui)

)
,

s.t g(u, v) = 0,

where g(u, v) :=
1

n

n∑
i=1

E(ui)− v and V := {ν ∈ L2(0, T )|; |v(t)| ≤ 2M ∀t ∈ [0, T ]}.

The Lagrangian function associated with the constrained optimization problem (P3)
is: L : U × L2(0, T )× L2(0, T ) −→ R̄ defined by:

(4.2) L(u, v, λ) := J̄(u, v) + 〈λ, 1

n

n∑
i=1

E(ui)− v〉L2(0,T ).

The dual problem (D) associated with (P3) is:

(4.3) (D) max
λ∈L2(0,T )

W(λ), where W(λ) := inf
u∈U,v∈V

L(u, v, λ).

For any λ ∈ L2(0, T ), it holds:

(4.4) W(λ) = −F ∗0 (λ) +
1

n

n∑
i=1

inf
ui∈Ui

E(Gi(u
i,W i)) + 〈λ,E(ui)〉L2(0,T ),

where F ∗0 (λ) := sup
v∈V
〈λ, v〉L2(0,T ) − F0(v).

The problem is said to be qualified if it is still feasible after a small perturbation
of the constraint, in the following sense:

(4.5) There exists ε > 0 such that BL2(0,T )(0, ε) ⊂ g(U ,V),

where BL2(0,T )(0, ε) is the open ball of radius ε in L2(0, T ) and g has been defined in
(4.1).

Lemma 4.1. Problem (P3) is qualified.
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Proof. Choose ε := M . Then: BL2(0,T )(0, ε) ⊂ BL2(0,T )(0, 2M) = g(0,V) ⊂
g(U ,V), where g(0,V) and g(U ,V) are respectively the image by g of {0} × V and
U × V. The conclusion follows.

By Assumption 2.3, Lemma 4.1 and the convexity of F0, the strong duality holds:
W(λ∗) = J̃(u∗), where λ∗ ∈ arg max

λ∈L2(0,T )

W(λ) and u∗ ∈ arg min
u∈U,v∈V

L(λ∗, u, v).

Since the set of admissible controls U = U1 × . . .×Un is a Cartesian product and
by strict convexity of Gi w.r.t. the first variable, each component u∗i can be uniquely
determined by solving the following sub problem:

u∗i = arg min
ui∈Ûi

{
E
(
Fi(u

i, Xi,ui) + 〈λ∗, ui〉L2(0,T )

)}
,

where Ûi := {u ∈ Ui |ui is F i − adapted}.
Remark 4.2. By using the same argument as in Theorem 3.2, one can prove:

(4.6)
min
ui∈Ûi

{
E
(
Fi(u

i, Xi,ui) + 〈λ∗, ui〉L2(0,T )

)}
= min
ui∈Ui

{
E
(
Fi(u

i, Xi,ui) + 〈λ∗, ui〉L2(0,T )

)}
.

5. Stochastic Uzawa and Sampled Stochastic Uzawa algorithms.

5.1. Continuous time setting. We recall that Assumptions 2.1 and 2.3 are in
force, as well as convexity of F0.

This section aims at proposing an algorithm to find a solution of the dual problem
(4.3).

For all i ∈ {1, . . . n}, and λ ∈ L2(0, T ), we define the optimal control ui(λ):

(5.1) ui(λ) := arg min
ui∈Ûi

{
E
(
Fi(u

i, Xi,ui) + 〈λ, ui〉L2(0,T )

)}
,

which is well defined since ui → E(Fi(u
i, Xi,ui)) is strictly convex.

For any λ ∈ L2(0, T ), the subset V (λ) is defined by:

(5.2) V (λ) := arg min
v∈V

{F0(v)− 〈λ, v〉L2(0,T )}.

Since F0 is convex and V is bounded, V (λ) is a non empty subset of V and is reduced
to a singleton if F0 is strictly convex.

For any λ ∈ L2(0, T ), a function v(λ), which is a selection of V (λ), is associated.
Uzawa’s algorithm seems particularly adapted for this problem. However at each

dual iteration k and any i ∈ {1, . . . , n}, for the update of λk+1, one would have to
compute the quantities E[ui(λk)], which is hard in practice. Therefore two algorithms
are proposed where at each iteration k, λk+1 is updated thanks to a realization of
ui(λk).

For any real valued function F defined on L2(0, T ), F ∗ stands for its Fenchel
conjugate.

Lemma 5.1. Assumption 3.5 holds iff F ∗0 is proper and strongly convex.

Proof. (i) Let Assumption 3.5 hold. Since F0 is proper, convex and l.s.c., F ∗0
is l.s.c. proper. From the Lipschitz property of the gradient of F0, it holds that
dom(F0) = L2(0, T ).
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Let s, s̃ ∈ dom(F ∗0 ) such that there exist λs ∈ ∂F ∗0 (s) and µs̃ ∈ ∂F ∗0 (s̃). From
the differentiability, l.s.c. and convexity of F0, it follows that: s = ∇F0(λs) and
s̃ = ∇F0(µs̃). By Assumption 3.5 and the extended Baillon-Haddad theorem [16,
Theorem 3.1], ∇F0 is cocoervice. In other words:

(5.3)

〈s− s̃, λs − µs̃〉L2(0,T ) = 〈∇F0(λs)−∇F0(µs̃), λs − µs̃〉L2(0,T )

≥ 1

c
‖∇F0(λs)−∇F0(µs̃)‖2L2(0,T )

=
1

c
‖s− s̃‖2L2(0,T ).

Therefore ∂F ∗0 is strongly monotone, which implies the strong convexity of F ∗0 .
(ii) Conversely, assume that F ∗0 is proper and strongly convex. Then there exist
α, β > 0 such that for any s ∈ dom(F ∗0 ): F ∗0 (s) ≥ α‖s‖2L2(0,T ) − β, and F0 being
convex, l.s.c. and proper, for any λ ∈ L2(0, T ) it holds:

(5.4) F0(λ) ≤ sup
s∈L2(0,T )

〈s, λ〉L2(0,T ) − α‖s‖L2(0,T )2 + β = ‖λ‖2/α+ β.

Thus F0 is proper and uniformly upper bounded over bounded sets and therefore is
locally Lipschitz. In addition, from the strong convexity of F ∗0 and the convexity
of F0, for any λ ∈ L2(0, T ), ∂F0(λ) is a singleton. Thus F0 is everywhere Gâteaux
differentiable.

Let λ, µ ∈ L2(0, T ). Since F ∗0 is strongly convex, the functions F ∗0 (s)−〈λ, s〉L2(0,T )

(resp. F ∗0 (s)−〈µ, s〉L2(0,T )) has a unique minimum point sλ (resp. sµ), characterized
by: λ ∈ ∂F ∗0 (sλ) and µ ∈ ∂F ∗0 (sµ). From the strong convexity of F ∗0 , the strong

monotonicity of ∂F ∗0 holds: 〈µ− λ, sµ − sλ〉L2(0,T ) ≥
1

c
‖sµ − sλ‖2L2(0,T ), where c > 0

is a constant related to the strong convexity of F ∗0 . Using that sλ = ∇F0(λ) and
sµ = ∇F0(µ), it holds:

(5.5) 〈µ− λ,∇F0(µ)−∇F0(λ) 〉L2(0,T ) ≥
1

c
‖∇F0(µ)−∇F0(λ)‖2L2(0,T ),

meaning that ∇F0 is cocoercive. Applying the Cauchy–Schwarz inequality to the left
hand side of the previous inequality, the Lipschitz property of ∇F0 follows.

Lemma 5.2. If Assumption 3.5 holds, then W is strongly concave.

Proof. For any λ ∈ L2(0, T ), the expression of W(λ) is given by 4.4, where for
any i ∈ {1, . . . , n}, λ 7→ inf

ui∈Ui
E(Gi(u

i,W i)) + 〈λ,E(u)i〉L2(0,T ) is concave and from

Lemma 5.1 −F ∗0 is strongly concave. Since the sum of a concave function and of a
strongly concave function is strongly concave, the result follows.

We introduce the function f : L2(0, T )→ L2(0, T ) where for any λ ∈ L2(0, T ):

(5.6) f(λ) := g(u(λ), v(λ)) =
1

n

n∑
i=1

E(ui(λ))− v(λ).

From the boundedness of U and V, it easily follows that there exists a finite positive
real M1 such that for any λ ∈ L2(0, T ):

(5.7) ‖f(λ)‖2L2(0,T ) ≤M1.
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For any λ ∈ L2(0, T ), we denote by ∂(−W(λ)) the subgradient of −W at λ. Therefore
for any λ ∈ L2(0, T ):

(5.8) ∂(−W(λ)) 3 −f(λ).

The iterative algorithm, proposed as an approximation scheme for λ∗ ∈ arg max
λ

W(λ),

is summarized in the Stochastic Uzawa Algorithm 5.1.

Algorithm 5.1 Stochastic Uzawa

1: Initialization λ0 ∈ L2(0, T ), set {ρk} satisfying Assumption 5.4.
2: k ← 0.
3: for k = 0, 1, . . . do
4: vk ← v(λk) where v(λk) ∈ V (λk) , this set being defined in (5.2).
5: ui,k ← ui(λk) where ui(λk) is defined in (5.1) for any i ∈ {1, . . . , n}.
6: Generate n independent realizations of Brownian motions

(W 1,k+1, . . . ,Wn,k+1), independent also with {W i,p : 1 ≤ i ≤ n, p ≤ k}.
7: Compute the associated state realizations (X1,u1(λk), . . . , Xn,un(λk)).

8: Y k+1 ← 1

n

n∑
i=1

ui(λk)(W i,k+1)− v(λk).

9: λk+1 ← λk + ρk Y
k+1.

Remark 5.3. For the purpose of notation, ui(λk)(W i,k+1) in (8) corresponds to
the realization of ui(λk) resulting from a realization of the Brownian W i,k+1.

At any dual iteration k of Algorithm 5.1, Y k+1 is an estimator of

E(
1

n

n∑
i=1

ui(λk)(W i,k+1)− v(λk)). Therefore an alternative approach proposed in the

Sampled Stochastic Uzawa Algorithm 5.2 consists in performing less simulations at
each iteration, by taking m < n, at the risk of performing more dual iterations, to

estimate the quantity E(
1

n

n∑
i=1

ui(λk)(W i,k+1)− v(λk)).

The complexity of the Stochastic Uzawa Algorithm 5.2 is proportional to m×K,
where K is the total number of dual iterations and m the number of simulations
performed at each iteration. The error E(‖λk+1 − λ∗‖2) for λ∗ ∈ S is the sum of
the square of the bias (which only depends on K and not on m) and the variance
(which both depends on K and m). Therefore this algorithm enables a bias variance
trade-off for a given complexity. Similarly for a given error it enables to optimize the
complexity of the algorithm.

Some assumptions on the step size are introduced.

Assumption 5.4. The sequence (ρk)k is such that: ρk > 0,
∞∑
k=1

ρk = ∞ and

∞∑
k=1

(ρk)2 <∞.

Note that a sequence of the form ρk :=
a

b+ k
, with (a, b) ∈ R∗+ × R+, satisfies

Assumption 5.4.
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Algorithm 5.2 Sampled Stochastic Uzawa

1: Initialization of m a positive integer and λ̌0 ∈ L2(0, T ), set {ρk} satisfying As-
sumption 5.4.

2: k ← 0.
3: for k = 0, 1, . . . do
4: vk ← v(λ̌k) where v(λ̌k) ∈ V (λ̌k) , this set being defined in (5.2).
5: Generatem i.i.d. discrete random variables Ik1 , . . . , I

k
m uniformly in {1, . . . , n}.

6: uI
k
j ,k ← uI

k
j (λ̌k) where uI

k
j (λ̌k) is defined in (5.1) for any j ∈ {1, . . . ,m}.

7: Generate m independent realizations of Brownian motions
(W Ik1 ,k+1, . . . ,W Ikm,k+1), independent also with {W i,p : 1 ≤ i ≤ m, p ≤ k}.

8: Compute the associated state realizations (XIk1 ,u
Ik1 (λ̌k), . . . , XIkm,u

Ikm (λ̌k)).

9: Y̌ k+1 ← 1

m

m∑
j=1

uI
k
j (λ̌k)(W Ikj ,k+1)− v(λ̌k)

10: λ̌k+1 ← λ̌k + ρkY̌
k+1.

Let us denote S := arg max
λ∈L2(0,T )

W(λ), where S is nonempty because of the strong

convexity of W.
The following result establishes the convergence of the Stochastic Uzawa Algo-

rithm 5.1:

Theorem 5.5. Let Assumption 5.4 hold, then:
(i) {‖λk − λ‖2L2(0,T )} converges a.s., for all λ ∈ S.
(ii) W(λk) −−−−→

k→∞
max

λ∈L2(0,T )
W(λ) a.s.

(iii) {λk} weakly converges to some λ̄ ∈ S in L2(0, T ) a.s.
(iv) If Assumption 3.5 holds, then a.s. {λk} converges to λ̄ in L2(0, T ), with

S := {λ̄}.

Though the proof is similar to [6, Theorem 3.6], the current framework is different
from the one of that reference, and for the convenience of the reader we provide the
proof.
We first state two lemmas.

Lemma 5.6 (Robbins-Siegmund). Let {Gk} be an increasing sequence of σ-
algebra and dk, ak, bk and ck be nonnegative random variables adapted to Gk. Assume

that: E(dk+1|Gk) ≤ dk(1 + ak) + bk − ck and
∞∑
k=1

ak <∞ a.s.,
∞∑
k=1

bk <∞ a.s. Then

with probability one, {dk} is convergent and it holds that
∞∑
k=1

ck <∞.

Proof. See [5], Theorem 1.3.12.

Lemma 5.7. Let {αk} be a nonnegative deterministic sequence and {βk} a non-

negative random sequence adapted to {Gk}. Assume that
∞∑
k=1

αk = ∞ a.s. and

E(

∞∑
k=1

αkβk) < ∞ a.s. Moreover assume that βk − E(βk+1|Gk) ≤ cαk a.s. for all
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k and some c > 0. Then βk
a.s.−−→ 0.

Proof. See [6], Proposition 3.2.

Proof of Theorem 5.5. First consider point (i). Let λ ∈ S. For any k, Gk+1 is the
filtration defined by:

(5.9) Gk+1 := σ
(
{W i,p} : 1 ≤ i ≤ n, p ≤ k + 1}

)
.

Using the definition of Y k+1 ∈ L2(0, T ) line 8 in the Stochastic Uzawa Algorithm 5.1,
we have:

(5.10)

‖λk+1 − λ‖2L2(0,T ) = ‖λk + ρkY
k+1 − λ‖2L2(0,T )

= ‖λk − λ‖2L2(0,T ) + 2ρk〈λk − λ, Y k+1〉L2(0,T )

+(ρk)2‖Y k+1‖2L2(0,T ).

Since Y k+1 is independent from Gk, and using (5.7), it follows that:

(5.11) E(‖Y k+1‖2L2(0,T )|Gk) = E

(
‖ 1

n

n∑
i=1

ui(λk)(W i,k+1)− v(λk)‖2L2(0,T )

)
≤M1

Since λk is Gk-measurable and that E[Y k+1|Gk] = f(λk), we have that:

(5.12)

E[‖λk+1 − λ‖2L2(0,T )|Gk]

= ‖λk − λ‖2L2(0,T ) + 2ρkE(〈λk − λ, Y k+1〉|Gk) + (ρk)2E[‖Y k+1‖2L2(0,T )|Gk]

≤ ‖λk − λ‖2L2(0,T ) + 2ρk〈λk − λ, f(λk)〉+ (ρk)2M1

≤ ‖λk − λ‖2L2(0,T ) + (ρk)2M1 − 2ρk(W(λ)−W(λk)).

In the last inequality, we used the concavity of W and (5.8). We set:

(5.13) ak = 0, bk = (ρk)2M1, ck = 2ρk(W(λ)−W(λk)),

We have that
∞∑
k=1

ak < ∞ a.s. and
∞∑
k=1

bk < ∞ a.s. Clearly, ak and bk are nonnega-

tive; ck is nonnegative since λ ∈ S. By Lemma 5.6, the sequence {‖λk − λ‖2L2(0,T )}
converges a.s. Now we show point (ii) thanks to Lemma 5.7.

By Lemma 5.6:
∞∑
k=1

ρk(W(λ) − W(λk)) < ∞ a.s. Taking the expected value in

both side of (5.12), we get, using the deterministic version of Lemma 5.6 that:

E

( ∞∑
k=1

ρk(W(λ)−W(λk))

)
< ∞. By concavity of W and the Cauchy-Schwarz in-

equality, we have:

(5.14) W(λk+1)−W(λk) ≤ 〈f(λk), λk+1 − λk〉 ≤ ρk‖f(λk)‖ ‖Y k+1‖.

Let τM be the stopping time τM := inf{k : ‖λk‖ > M} for M ∈ N.
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The sequence {βk} is defined by:

(5.15) βk :=

 W(λ)−W(λk) if {τM > k},

W(λ)−W(λτM ) otherwise , with βτM+k = βτM , k ≥ 1.

Notice that if ‖λk‖ ≤M , there exists by (5.11) and (5.7) M ′ > 0 such that

(5.16) ‖f(λk)‖E(‖Y k+1‖|Gk) ≤ (M ′)2.

Now: βk−βk+1 = 1τM>k(W(λk+1)−W(λk)), and therefore by taking the conditional
expectation on both sides, noticing that 1τM>k is Gk-measurable, and considering
(5.14) and (5.16), we get βk − E(βk+1|Gk) ≤ ρk(M ′)2.
By Lemma 5.7, on the set BM := {τM = ∞}, βk converges to 0 and coincides with
W(λ) − W(λk). Since ‖λk − λ‖ converges a.s, ‖λk‖ is bounded in probability and
therefore the probability of the set BM ca be made arbitrarily close to 1 by choosing
M large. Since P(∪∞M=1BM ) = 1, we may infer that W(λ) −W(λk) converges to 0
almost surely.

For point (ii), since {‖λk − λ‖2} converges a.s. for all λ ∈ S, it is bounded
in probability, so the sequence {λk} generated by the algorithm has a.s. a weak
accumulation point λ̄ (the point λ̄ is random in general). Let {λkm} such that λkm ⇀
λ̄. SinceW is concave and upper semi-continuous, it is weakly upper semi-continuous,

(5.17) W(λ̄) ≥ lim
m→∞

W(λkm) =W(λ̃).

In particular, λ̄ ∈ S. To show uniqueness, let λ1, λ2 ∈ S be two distinct weak limits
of {λk}, i.e λkm ⇀ λ1 and λkl ⇀ λ2. Then

(5.18) ‖λkm − λ2‖2 = ‖λkm − λ1‖2 + ‖λ1 − λ2‖2 + 2〈λkm − λ1, λ1 − λ2〉,

(5.19) ‖λkl − λ1‖2 = ‖λk1 − λ2‖2 + ‖λ2 − λ1‖2 + 2〈λkl − λ2, λ2 − λ1〉,

so by weak convergence of each subsequence, (5.18) and (5.19) are combined to obtain

(5.20) lim
m→∞

‖λkm − λ2‖2 − ‖λkm − λ1‖2 = ‖λ2 − λ1‖2,

(5.21) lim
l→∞
‖λkl − λ1‖2 − ‖λkl − λ2‖2 = ‖λ2 − λ1‖2.

By a.s. convergence of the sequence {‖λk − λ‖2} for all λ ∈ S, the limit of each
subsequence is equal to the limit of the entire sequence with probability one, so
lim
m→∞

‖λkm − λ1‖2 = lim
k→∞

‖λk − λ1‖2 =: l1 and similarly lim
m→∞

‖λkm − λ2‖2 =

lim
k→∞

‖λk−λ2‖2 =: l2. Therefore (5.20) and (5.21) imply l2− l1 = ‖λ1−λ2‖2 = l1− l2,

meaning ‖λ1 − λ2‖2 = 0 and thus the weak limits coincide. Therefore {λk} is weakly
convergent to a unique limit with probability one.

Finally, the last statement can now be proved. By strong convexity, −W has an
unique minimum λ̄, so S = {λ̄}. By strong convexity, there exists a µ > 0 such that

(5.22) W(λ̄)−W(λk) ≥ −〈f(λ̄), λk − λ̄〉L2(0,T ) +
µ

2
‖λk − λ̄‖L2(0,T ).

Since −〈f(λ̄), λk − λ̄〉L2(0,T ) > 0, by optimality of λ̄, lim
k→∞

W(λ̄) − W(λk) = 0 a.s.

implies lim
k→∞

‖λk − λ̄‖L2(0,T ) = 0 a.s.
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We recall the definition of J̄(u, v) in (4.1) and we define ū:

(5.23) ū := arg min
u∈U

{
E

(
n∑
i=1

Fi(u
i, Xi,ui) + 〈λ̄, ui〉L2(0,T )

)}
,

If F0 is strictly convex, then we define:

(5.24) v̄ := arg min
v∈V

{
F0(v) + 〈λ̄, v〉L2(0,T )

}
.

If Assumption 3.5 holds and F0 is strictly convex, (ū, v̄, λ̄) is a saddle point and ū is
the unique minimizer of J̃ in U .

Theorem 5.8. Let the Assumptions 3.5 and 5.4 hold, then we have:
(i) {u(λk)} weakly converges a.s. to ū.
If F0 is strictly convex, then:
(ii) J̃(u(λk)) −−−−→

k→∞
J̃(ū) a.s.

(iii) lim sup
k→∞

J(u(λk)) ≤ inf
u∈U

J(u) + 2 ε a.s. where ε is defined in Theorem 3.6.(ii).

Proof. Proof of point (i). Since the sequence {(u(λk), v(λk))} is bounded in U×
L2(0, T ), there exists a weakly convergent sub-sequence {(u(λθk), v(λθk))} such that:

(5.25) (u(λθk), v(λθk)) ⇀
k→∞

(uθ, vθ) ∈ U × V.

Using the definition of λ 7→ u(λ) in (5.1), it holds for any k > 0:

(5.26)
E
(
Fi(ū

i), Xi,ūi) + 〈λθk , ūi)〉L2(0,T )

)
≥ E

(
Fi(u

i(λθk), Xi,ui(λθk )) + 〈λθk , ui(λθk)〉L2(0,T )

)
.

Using that z 7→ Fi(z,X
i,z(ω))) = Gi(z, ω), with z ∈ L2(0, T ), is w.l.s.c. for any

ω ∈ C(0, T ) (see Remark 2.5) and the a.s. convergence of {λk}, resulting from
Theorem 5.5.(iv), we have from (5.26) when k →∞ :

(5.27) E
(
Fi(ū

i, Xi,ūi) + 〈λ̄, ūi)〉L2(0,T )

)
≥ E

(
Fi(u

i,θ, Xi,ui,θ ) + 〈λ̄, ui,θ〉L2(0,T )

)
.

Since ū is uniquely defined (see (5.23)), it follows uθ = ū and (5.27) is an equality.
Using that every weakly convergent sub sequence of {u(λk)} has the same weak limit
ū, (i) is deduced.

Proof of point (ii).
From point (i) and (5.27), it follows for any i ∈ {1, . . . , n}:

(5.28) lim
k→∞

E
(
Fi(u

i(λk), Xi,ui(λk))
)

= E
(
Fi(ū

i, Xi,ūi)
)
.

Using 5.25, the w.l.s.c. of F0, equation (5.24), and applying the same previous argu-
ment to {v(λθk)}, it holds that:

(5.29) lim
k→∞

F0(v(λk))− 〈λk, v(λk)〉L2(0,T ) = F0(v̄)− 〈λ̄, v̄〉L2(0,T ),

and v(λk) ⇀
k→∞

v̄.
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From the two previsous equalities and the a.s. convergence of {λk}, it follows:

(5.30) lim
k→∞

F0(v(λk)) = F0(v̄).

Using that (ū, v̄, λ̄) is a saddle point, it follows:

(5.31)
1

n

n∑
i=1

E(ūi) = v̄.

From (5.30) and (5.31), it holds:

(5.32) lim
k→∞

F0

(
1

n

n∑
i=1

E(ui(λk))

)
= F0

(
1

n

n∑
i=1

E(ūi)

)
.

Then adding (5.28) and (5.32): lim
k→∞

J̃(u(λk)) = J̃(ū).

Proof of point (iii). From point (ii), inequality (3.10) and Theorem 3.6.(ii), it
holds:

(5.33) lim sup
k→∞

J(u(λk)) ≤ lim sup
k→∞

J̃(u(λk)) + ε = inf
u∈U

J̃(u) + ε ≤ inf
u∈U

J(u) + 2ε ,

where ε = 2cTM2/n. The conclusion follows.

Assumption 5.9. (i) F0 is strongly convex.
(ii) For any i ∈ {1, . . . , n} and ω ∈ C(0, T ), the function ui 7→ E(Gi(u

i, ω)) is
strongly convex.

Lemma 5.10. Let Assumption 5.9.(i) hold, then the function λ 7→ v(λ) is Lips-
chitz on L2(0, T ).

Proof. From the definition of v in (5.2), we have for any λ ∈ L2(0, T ): λ ∈
∂F0(v(λ)). Thus for any λ, µ ∈ L2(0, T ), we have from the strong convexity of F0:
(5.34) F0(v(µ)) ≥ F0(v(λ)) + 〈λ, v(µ)− v(λ)〉L2(0,T ) + α‖v(µ)− v(λ)‖2L2(0,T )

F0(v(λ)) ≥ F0(v(µ)) + 〈µ, v(λ)− v(µ)〉L2(0,T ) + α‖v(λ)− v(µ)‖2L2(0,T ).

Adding the two previous inequalities, after simplications, we get:

(5.35) 〈λ− µ, v(λ)− v(µ)〉L2(0,T ) ≥ 2α‖v(λ)− v(µ)‖2L2(0,T ).

Applying Cauchy-Schwarz inequality and simplifying by ‖v(λ)− v(µ)‖L2(0,T ), we get
the desired Lipschitz inequality.

Lemma 5.11. Let Assumption 5.9.(ii) hold, thus the function λ 7→ u(λ) is Lips-
chitz on L2(0, T ).

Proof. The proof is similar to the proof of Lemma 5.10.

Theorem 5.12. Let the Assumption 3.5, 5.4, and 5.9 hold, then: u(λk) −−−−→
k→∞

u(λ̄) a.s.

Proof. The convergence follows from the Lipschitz property of λ 7→ u(λ) (as a
result of assumption 5.9) associated with the a.s. convergence of {λk}.
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Remark 5.13. Note that Theorems 5.5, 5.8 and 5.12 still hold when replacing λk

by λ̌k and Y k by Y̌ k (defined resp. line 9 and 10 in the Sampled Stochastic Uzawa
Algorithm 5.2). This can be proved by same argument, using that Y̌ k is bounded a.s.
and E(Y̌ k|Ǧk) = f(λ̌k) for any k, where:

(5.36) Ǧk = σ
(
{W Ip` ,p} : 1 ≤ ` ≤ m, p ≤ k}

)
∨ σ ({Ip` } : 1 ≤ ` ≤ m, p ≤ k}) ,

with W Ik` ,p and Ik` defined respectively at lines 7 and 5 of the Sampled Stochastic
Uzawa Algorithm 5.2.

Remark 5.14. From a practical point of view, this algorithm can be implemented
in a decentralized way, where the system operator sends the signal λ, which can
be assimilated to a price, to the domestic appliances, which compute their optimal
solution u(λ), depending on their local parameters.

In (2.2), the states and controls of the agents are described in a continuous time
setting with finite horizon. However all the previous results are easy to extend if
we consider a discrete time setting with finite horizon, the proofs using the same
arguments as in continuous time setting.

5.2. Extension to the discrete time setting. The results of the previous
sections are extended to the discrete time setting in this subsection.

The following notations are used:
• Let n ∈ N∗ be the number of agents and T ∈ N∗ the finite time horizon.
• For any matrix M , M> denotes its transpose
• For any i ∈ {1, . . . , n}, Xi,ui := (xi0, . . . , x

i
T ) ∈ RT is the state trajectory

of agent i controlled by ui := (ui0, . . . , u
i
T−1) ∈ RT . Similarly, for any t ∈

{0, . . . , T} Xu
t := (x1

t , . . . , x
n
t ) ∈ Rn is the state vector of all the agents

controlled by uj := (u1
t , . . . , u

n
t ) ∈ Rn. We have the following dynamics:

(5.37)

 Xu
t+1 = AXu

t +But + CWt+1, for t ∈ {0, . . . , T − 1},

Xu
0 = x0 ∈ Rn,

where A and B are diagonal matrices, C is a positive diagonal matrix of size
n. The global noise process is a sequence of independent random variables
(W1, . . . ,WT ), where for any t ∈ {1, . . . , T}, Wt is a vector of centered, re-
duced and independent Gaussian variables, defined on the probability space
(Ω,F ,P): Wt := (W 1

t , . . . ,W
n
t ). For any i ∈ {1, . . . , n} and t ∈ {1, . . . , T} we

define F it := σ(W i
1, . . . ,W

i
t ).

• For any i ∈ {1, . . . , n}, we define U i :=

T−1∏
t=0

U it the control space of agent i

with: U it := {α : Ω 7→ R |α isF it−measurable and α(ω) ∈ [−M,M ] P-a.s.},

where M > 0. We finally set U :=

n∏
i=1

U i.

Now for any n ∈ T∗ the optimization problems (P d1 ) and (P d2 ) can be clearly
defined:

(5.38) (P d1 )


inf
u∈U

Jd(u)

Jd(u) := E

(
F0(

1

n

n∑
i=1

ui) +
1

n

n∑
i=1

Fi(u
i, Xi,ui

)
,
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and

(5.39) (P d2 )


inf
u∈U

J̃d(u)

J̃d(u) := F0

(
1

n

n∑
i=1

E(ui)

)
+

1

n
E

(
n∑
i=1

Fi(u
i, Xi,ui

)
,

where F0 : RT → R̄ and Fi : RT×RT → R are proper and lower semi continuous, and

there exists û ∈ U such that: E

(
F0(

1

n

n∑
i=1

ûi)

)
< ∞. In addition we suppose that

F0 is convex and differentiable with c-Lipschitz derivative and for any i ∈ {1, . . . , n},
ui 7→ E(Fi(u

i, Xi,ui)) is strictly convex.

Corollary 5.15. (i) Problems (P d1 ) and (P d2 ) admit both a unique solution.
(ii) Any optimal solution of problem (P d2 ) is an ε-optimal solution, where ε =

2cNM2/n, of problem (P d1 ).

Proof. The proof of point (i) is the same as for the Lemma 2.6. Similarly, point
(ii) is obtained by using the same proof of Theorem 3.6.(ii).

By adapting the Stochastic Uzawa (Algo 5.1) and the Sampled Stochastic Uzawa
(Algo 5.2) to this discrete time setting, one can obtain similar results to Theorems
5.5, 5.8 and 5.12.

6. A numerical example: the LQG (Linear Quadratic Gaussian) prob-
lem. This sections aims at illustrating numerically the convergence of the Stochastic
Uzawa (Algo 5.1) on a simple example. The algorithm speed of convergence is stud-
ied, depending on the number of dual iterations and of agents. A linear quadratic
formulation is considered, with n agents in a discrete setting problem (PLQG2 ). We
use the notations of Section 5.2.

This framework constitutes a simple test case, since the (deterministic) Uzawa’s
algorithm can be performed, and one can compare the resulting multiplier estimate
with the one provided by the Stochastic Uzawa algorithm. Besides all the assump-
tions required for the convergence of the Stochastic Uzawa (Algo 5.1) are satisfied
for problem (PLQG2 ). In addition the local problems (line 5 of this algorithm) can be
resolved analytically.

Problem (PLQG2 ) is similar to (P d2 ) defined in (5.39), but in this specific case, the
function F0 is a quadratic function of the aggregate strategies of the agents

(6.1) F0

(
1

n

n∑
i=1

E(ui)

)
:=

ν

2

T∑
t=0

(
1

n

n∑
i=1

E(uit)− rt

)2

,

where ν > 0, {rt} is a deterministic target sequence. Similarly, the cost functions Fi
of the agents is expressed in a quadratic form of its state Xi,ui and control ui.

(6.2) Fi(u
i, Xi,ui) :=

1

2

(
T∑
t=0

di(X
i,ui

t )2 + qi(u
i
t)

2

)
+
dfi
2

(Xi,ui

T )2,

where for any i ∈ {1, . . . , n}, qi > 0 and di > 0. Defining the matrices D =

diag(d1, . . . , dn), Q = diag(q1, . . . , qn) and Df = diag(df1 , . . . , d
f
n), we get:

(6.3)
n∑
i=1

Fi(u
i, Xi,ui) =

1

2

(
T∑
t=0

Xu>
t DXu

t + u>t Qut

)
+

1

2
Xu>
T DfXu

T .
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Now the optimization problem (PLQG2 ) is clearly defined.
To find the optimal multiplier and control of (PLQG2 ), the Stochastic Uzawa Al-

gorithm 5.1 is applied where in this specific case the lines 4 and 6 take respectively
the following form at any dual iteration k:

(6.4) ui(λk) := arg min
ui∈Ũi

{
E

(
1

2

( T∑
t=0

di(X
i,ui

t )2 + qi(u
i
t)

2 + λkt u
i
t

)
+
dfi
2

(Xi,ui

T )2

)}
,

(6.5) v(λk) := arg min
v∈RT

{
(

T∑
t=0

ν (vt − rt)2 − λkt vt

}
.

The optimization problem (6.4) solved by each local agent is also in the LQG frame-
work. One can solve these problems using the results of [23]. The resolution via
Riccati equations of (6.4) shows that ui(λk) is a linear function of the state Xi,ui

and of the price λk. Therefore, in this specific example, for any t one can explicitly
compute E(uit(λ

k)|Gk), where Gk is defined in (5.9). It allows us to implement the
(deterministic) Uzawa’s algorithm as a reference to evaluate the performances of the
Stochastic Uzawa algorithm.

Different population sizes n are considered, with n ranging between 1 and 104.
Similarly the algorithm is stopped for different numbers of dual iteration k, ranging
between 1 and 104. In order to evaluate the bias and variance of the Stochastic Uzawa
algorithm, we have performed J = 1000 runs of the Stochastic Uzawa algorithm.

For any n, given the strong convexity of the dual function associated with (PLQG2 ),
there exists a unique optimal multiplier λ̄n. For any n, λk,n,j denotes the dual price
computed during the jth simulations (j = 1, . . . , J) of the Stochastic Uzawa algorithm,
after k dual iterations.

For any n, the deterministic multiplier λ̄n is obtained by applying Uzawa’s al-
gorithm, after 104 dual iterations. To this end, we applied the Stochastic Uzawa
Algorithm 5.1 where we ignored the line 8 and we replaced the update of λk line 9

by: λ̄k+1 ← λ̄k + ρk(
1

n

n∑
i=1

E(ui(λ̄k))− v(λ̄k)).

At each dual iteration k, the computation of E(ui(λk)) is easy in this specific case,
ui(λk) being a linear function of Xi,ui and λk as explained in the previous subsection.

The following results compare the multipliers λk,n,j and λ̄n, obtained respectively
by applying the Stochastic Uzawa and Uzawa algorithms.

For any k and n, bk,n, vk,n and `k,n denotes respectively an estimation of the bias,
the variance and the L2 norm of the error, via Monte Carlo method with J simulations.

Thus we have for any k and n: bk,n =
1

J

J∑
j=1

λk,n,j − λ̄n, vk,n =
1

J

J∑
j=1

‖λk,n,j − λ̄n −

bk,n‖22, `k,n = vk,n + ‖bk,n‖22
On Figure 6.0.1, we observe a behavior in 1/kα (with α ' 0.8) of the variance

vk,n w.r.t. the number of iterations k. This rate of convergence is consistent with [5,
Theorem 2.2.12, Chapter 2] for Robbins Monro algorithm where the convergence is
proved to be of order at most in 1/k.

On Figure 6.0.2 we observe a behavior in 1/nβ (with β ' 1) of the variance vk,n
w.r.t. the number of agents n. This is expected, see [5, Theorem 2.2.12, Chapter 2]
and observing that the variance of Y k+1 is of order 1/n for any iteration k.
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On Figure 6.0.3 we observe a faster behavior than 1/k of the bias ‖bk,n‖2 w.r.t. the
number of iterations k. Thus for a large number of iterations (k > 0), the dominant
term impacting the error lk,n is the variance vk,n.

7. Price-based coordination of a large population of thermostatically
controlled loads. The goal of this section is to demonstrate the applicability of the
presented approach for the coordination of thermostatic loads in a smart grid context.
The problem analyses the daily operation of a power system with a large penetration
of price-responsive demand, adopting a modelling framework similar to [4]. Two dis-
tinct elements are considered: i) a system operator, that must schedule a portfolio
of generation assets in order to satisfy the energy demand at a minimum cost, and
ii) a population of price-responsive loads (TCLs) that individually determine their
ON/OFF power consumption profile in response to energy prices with the objective
of minimizing their operating cost while fulfilling users’ requirements. Note that the
operations of the two elements are interconnected, since the aggregate power consump-
tion of the TCLs will modify the demand profile that needs to be accommodated by
the system operator.

7.1. Formulation of the problem. In the considered problem, the function F0

represents the minimized power production cost and corresponds to the resolution of
an Unit Commitment (UC) problem. The UC determines generation scheduling deci-
sions (in terms of energy production and frequency response (FR) provision) in order
to minimize the short term operating cost of the system while matching generation
and demand. The latter is the sum of an inflexible deterministic component (denoted
for any instant t ∈ [0, T ] by D̄(t)) and of a stochastic part, which corresponds to the
total TCL demand profile nUTCL(t).

For simplicity, a Quadratic Programming (QP) formulation in a discrete time
setting is adopted for the UC problem. The central planner disposes of Z genera-
tion technologies (gas, nuclear, wind) and schedules their production and allocated
response by slot of 30 min every day. For any j ∈ {1, . . . , Z} and ` ∈ {1, . . . , 48},
Hj(t`), Gj(t`) and Rj(t`) are respectively the commitment, the power production
and response [MWh] from unit j during the time interval [t`, t`+1]. The associated
vectors are denoted by H(t`) = [H1(t`), . . . ,HZ(t`)], G(t`) = [G1(t`), . . . , GZ(t`)] and
R(t`) = [R1(t`), . . . , RZ(t`)].

The cost sustained at time t` by unit j is linear with respect to the commit-
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ment Hj(t`) and quadratic with respect to generation Gj(tl) and can be expressed
as c1,jHj(t`)G

Max
j (t`) + c2,jGj(t`) + c3,jGj(t`)

2, with GMax
j as the limit of produc-

tion allocated by each generation technology, c1,j [e/MWh] as no-load cost and c2,j
[e/MWh] and c3,j [e/MW2h] as production cost of the generation technology j. The
optimization of F0 must satisfy the following constraints for all ` ∈ {1, . . . , 48} and
` ∈ {1, . . . , 48}:

(7.1)
Z∑
j=1

Gj(t`)−
∫ t`+1

t`

(D̄(t) + nUTCL(t))dt = 0,

(7.2) 0 ≤ Hj(t`) ≤ 1,

(7.3) Rj(t`)− rjHj(t`)G
max
j (t`) ≤ 0,

(7.4) Rj(t`)− sj(Hj(t`)G
max
j (t`)−Gj(t`)) ≤ 0,

(7.5) ∆GL − Λ
(
D̄(t`) + n(ŪTCL(t`)− R̄TCL(t`)

)
∆fmaxqss − R̂(t`) ≤ 0,

(7.6) 2∆GLtref td − t2ref R̂(t`)− 4∆fref tdĤ(`) ≤ 0,

(7.7) q̄(t)− Ĥ(`)R̂(`) ≤ 0

(7.8) µ rjHj(t`)G
max
j (t`)−Gj(t`) ≤ 0,

where (7.1) equals production and aggregated demand (i.e. the system inelastic de-
mand D̄ and the TCL flexible demand nUTCL). The quantities R̂ and Ĥ denote
the total reserve and inertia of the system, respectively, and are defined for any
` ∈ {1, . . . , 48} as:

R̂(t`) =

Z∑
j=1

Rj(t`) + nRTCL(t`) and Ĥ(t`) =

Z∑
j=1

hjHj(t`)G
max
j − hL∆GL

f0
.

Assuming that for any generic generation technology j, the size of single plants
included in j is quite smaller than the aggregate installed capacity of j, inequality
(7.2) sets that commitment decisions can be extended to the fleet and expressed by
continuous variables Hj(t`) ∈ [0, 1].

The amount of response allocated by each generation technology is limited by
the headroom rjHj(t`)G

max
j (t`) in (7.3) and the slope sj linking the FR with the

dispatch level (7.4). Constraints (7.5) to (7.8) deal with frequency response provision
and RTCL (the mean of FR allocated by TCLs). They guaranty secure frequency
deviations following sudden generation loss ∆GL. Inequality (7.5) allocates enough
FR (with delivery time td) such that the quasi-steady-state frequency remains above
∆fmaxqss , with Λ accounting for the damping effect introduced by the loads [11]. Fi-
nally (7.7) constraints the maximum tolerable frequency deviation ∆fnad, following
the formulation and methodology presented in [22] and [24]. The rate of change of
frequency is taken into account in (7.6) where at trcf the frequency deviation remains
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above ∆fref . Constraint (7.8) prevents trivial unrealistic solutions that may arise
in the proposed formulation, such as high values of committed generation Hj(t`) in
correspondence with low (even zero) generation dispatch Gj(t`). The reader can refer
to [4] for more details on the UC problem.

The solution of the UC problem, corresponding to the function F0, can be de-
scribed by the following optimization problem:

(7.9) F0(UTCL, RTCL) := min
H,G,R

48∑
`=1

Z∑
j=1

c1,jHj(t`)G
max
j (t`)+c2,jGj(t`)+c3,jGj(t`)

2,

subject to equations (7.1)-(7.8).
Note that the formulation of the present problem does not fulfill all the assumption

presented in Sections 2 and 5. In particular, the function F0 is not strictly convex, as
instead supposed in Theorem 5.8.(ii).(iii). Nevertheless, the numerical simulations of
Section 7.2 shows that the proposed approach is still able to achieve convergence.

Regarding the modelling of the individual price-responsive TCLs, each TCL
i ∈ {1, . . . , n} is characterized at any time t ∈ [0, T ] by its temperature Xi,ui

t [◦C]

controlled by its power consumption uit [W ]. The thermal dynamic Xi,ui

t of a single
TCL i is given by:

(7.10)


dXi,ui

t = − 1

γi
(Xi,ui

t −Xi
OFF + ζiu

i
t)dt+ σi dW

i
t , for t ∈ [0, T ],

Xi
0,ui = xi0 ∈ R,

where:
• γi is its thermal time constant [s].
• Xi

OFF is the ambient temperature [◦C].
• ζi is the heat exchange parameter [◦C/W ].
• σi is a positive constant [(◦C)s

1
2 ],

• W i is a Brownian Motion [s
1
2 ], independent from W j for any j 6= i.

For any i ∈ {1, . . . , n}, the set of control Ui is defined by:

(7.11) Ui := {ν ∈ Hi and νt(ω) ∈ {0, PON,i} for a.a. (t, ω) ∈ [0, T ]× Ωi}.

The TCLs dynamics in (7.10) have been derived according to [10] , with the addition
of the stochastic term σidW

i
t to account for the influence of the environment (open-

ing/closing of the fridge, environment temperature etc) on the evolution of the TCL
temperature.

By combining the objective functions of the systems, the system operator has to
solve the following optimization problem:
(7.12)

(PTCL1 )



inf
u∈U

J(u)

J(u) := E

(
F0

(
1

n

n∑
i=1

ui,
1

n

n∑
i=1

ri(u
i, Xi,ui)

))

+E

(
1

n

n∑
i=1

∫ T

0

fi(u
i
s, X

i,ui

s )ds+ γi(X
i,ui

T − X̄i)2

)
,

where, for any i ∈ {1, . . . , n} and any s ∈ [0, T ]:
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• ri(ui, Xi,ui)(s) is the maximum amount of FR allocated by TCL i at time s:

(7.13) ri(u
i, Xi,ui)(s) := uis

Xi,ui

s −Xi
min

Xi
max −Xi

min

.

• fi(uis, Xi,ui

s ) is the individual discomfort term of the TCL i at time s:
(7.14)
fi(u

i
s, X

i,ui

s ) := αi (Xi,ui

s − X̄i)2 + βi((X
i
min −Xi,ui

s )2
+ + (Xi,ui

s −Xi
max)2

+),

where:
– αi(X

i,ui

s − X̄i)2 is a discomfort term penalizing temperature deviation
from some comfort target X̄ [◦C], with αi a discomfort term parameter
[£ /h(◦C)2].

– βi((X
i,ui

s − Xi
min)2

+ + (Xi
max − Xi,ui

s )2
+) is a penalization term to keep

the temperature in the interval [Xi
min, X

i
max], with βi a target term pa-

rameter [£/s(◦C)2] and for any x ∈ R, (a)+ = max(0, a).
• γi(Xi,ui

T − X̄i)
2 is a terminal cost imposing periodic constraints, with γ a

target term parameter [£/s(◦C)2].
Note that the control set U is not convex. We can mention a possible relaxation

of the problem by taking the control in the interval [0, PON,i].
The modified problem (PTCL2 ) is studied to solve (PTCL1 ).

(7.15)

(PTCL2 )



inf
u∈U

J̃(u)

J̃(u) := F0

(
1

n

n∑
i=1

E(ui),
1

n

n∑
i=1

E(ri(u
i, Xi,ui))

)

+E

(
1

n

n∑
i=1

∫ T

0

fi(u
i
s, X

i,ui

s )ds+ γi(X
i,ui

T − X̄i)2

)
.

7.2. Decentralized implementation. The Sampled Stochastic Uzawa Algo-
rithm 5.2 is applied to solve (PTCL2 ), with m = 317 simulations per iteration. At each
iteration k, the lines 4 and 6 correspond respectively to the solution of a deterministic
UC problem and of an Hamilton Jacobi Bellman (HJB) equation. The time steps
∆t = 7.6 s and temperature steps ∆T = 0.15◦C are chosen for the discretization of
the HJB equation. Let us note that at line 6, each TCL solves its own local problem
on the basis of the received price signal λk = (pk, ρk):

(7.16) inf
ui∈Ui

∫ T

0

fi(u
i
s, X

i,ui

s ) + uisp
k
s − ri(ui, Xi,ui)(s)ρks ds,

where fi(uis, X
i,ui

s ) is a discomfort term defined in (7.14), uisp
k
s can be interpreted

as consumption cost and ri(u
i, Xi,ui)(s)ρks as fee awarded for FR provision. This

implementation has a practical sense: each TCL uses local information and a price
that is communicated to them to schedule its power consumption on the time interval
[0, T ]. It follows that, with the proposed approach, it is possible to optimize the overall
system costs in (PTCL1 ) in a distributed manner, with each TCL acting independently
and pursuing the minimization of its own costs.

7.3. Results. The generation technologies available in the system are nuclear,
combined cycle gas turbines (CCGT), open cycle gas turbines (OCGT) and wind.
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The characteristics and parameters of the UC in this simulation are the same as in
[4].

It is assumed that a population of n = 2×107 fridges with built-in freeze compart-
ment operates in the system according to the proposed price-based control scheme.
For any agent i we set the consumption parameter PON,i = 180W . The values of the
TCL dynamic parameters γi and Xi

OFF of (7.10) are equal to the ones taken in [4].
Note that it is possible to take a population of heterogeneous TCLs with different
parameter values. The initial temperature are picked randomly uniformly between
−21◦C and −14◦C. For any agent i, the parameters of the individual cost function
fi, defined in (7.14), are: αi = 0.2× 10−4 £/s(◦C)2, βi = 50£/s(◦C)2, X̄i = −17.5◦C
and Xmax = −14◦C, Xmin = −21◦C. The parameter βi is taken intentionally very
large to make the temperature stay in the interval [Xi

max, X
i
min]. Note that the indi-

vidual problems solved by the TCLs are distinct than the ones in [4] (different terms
and parameters).

Simulations are performed for different values of volatility σi := 0, 1, 2 (all the
TCLs have the same volatility in the simulations), where σi is defined in (7.10).
The Sampled Stochastic Uzawa Algorithm is stopped after 75 iterations or when the
relative variation 2‖λk+1 − λk‖22/‖λk+1 + λk‖22 between two successive prices λk and
λk+1 is less than 10−4.

The resulting profile of total power consumption nUTCL and total allocated re-
sponse nRTCL by the TCLs population are reported on figure 7.3.1. in three "flexibil-
ity scenario" each corresponding to a case where TCL flexibility is enabled with three
different volatilities σ = 0; σ = 1 and σ = 2. The electricity prices p and response
availability prices ρ are shown in Figure 7.3.2. As observed in [4], the total con-
sumption nUTCL is higher when the price p is lower and inversely the total allocated
response nRTCL is higher when the price signal ρ is also higher. This can be observed
during the first hours of the day, between 0 and 6h. The power UTCL then oscillates
during the day in order to maintain feasible levels of the internal temperature of the
TCLs. Though the prices seem not to be sensitive to the values taken by σ, the
average consumption UTCL and response RTCL are highly correlated to the volatility
of the temperature of the TCLs. The less noisy their temperature are, the more price
sensitive and flexible their consumption profiles are. The TCLs impact on system
commitment decisions and consequent energy/FR dispatch levels is also analyzed and
displayed in Figure 7.3.3 and 7.3.4. The production and reserve in the "flexibility sce-
nario" minus the production and reserve in the "no-flexibility scenario" are plotted,
for different volatilities σ. In the no-flexibility scenario we impose RTCL(t) = 0 and
we consider that the TCLs operate exclusively according to their internal tempera-
ture Xi,ui . They switch ON (ui(t) = PON,i) when they reach their maximum feasible
temperature Xi

max and they switch back OFF again (ui(t) = 0) when they reach the
minimum temperature Xi

min. In figure 7.3.3, we can clearly observe that TCL’s flexi-
bility allows to increase the contribution of wind generation (reducing curtailment) to
the energy balance of the system while decreasing the contribution of CCGT both in
energy and frequency response. Without TCL support, the optimal solution envisages
a further curtailment of wind output in favor of an increase in CCGT generation, as
wind does not provide FR. As expected, the influence of the TCL on the system is
larger when the temperature volatility is lower.

The system costs (i.e. UC solution) obtained with the flexibility scenario (FS)
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Figure 7.3.1: Total power consumption U and
allocated response R (MW) of TCLs after 75 it-
erations of the algorithm.
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Figure 7.3.2: Electricity price p and response avail-
ability price ρ (£/MWh) after 75 iterations of the al-
gorithm.
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Figure 7.3.3: Deviation of generation profiles
(MW) from the "no-flexibility scenario" for
three different "flexibility scenario" correspond-
ing to three temperature volatilities.
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Figure 7.3.4: Deviation of Frequency Response (MW)
allocated by CCGT from the "no-flexibility scenario"
for three different "flexibility scenario" corresponding
to three temperature volatilities.

are now compared with the Business-as-usual (BAU) framework ones (the TCLs do
not exploit their flexibility and they operate exclusively according to their internal
temperature as previously explained) in Tab. 1. As expected the costs are lower in the
CF where TCLs participate in reducing the system generation costs. The reduction
is higher for σ = 0, where the reduction is about 1.9%, than for σ = 1 or σ = 2, where
the the reduction is respectively about 1.6% and 1.2%. This relies on the tendency of
the TCLs to be more flexible when their volatility is low. The reduction observed in
the CF scenario is due to the smaller use of OCGT and CCGT generation technologies
for the benefit of wind.
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σ = 0 σ = 1 σ = 2

BAU 2.770× 107 2.770× 107 2.772× 107

FS 2.719× 107 2.725× 107 2.740× 107

Table 1: Minimized system costs in (£)
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