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Abstract

We analyze a principal-agent problem between the state (principal) and a firm (agent) which produces
carbon emissions. In particular, the aim of the state is to motivate the firm to reduce those emissions
as much as possible by structuring an appropriate incentive policy. We allow for two different kinds
of incentives: a “negative” one, typically represented by a fee to pay at a given time T if emissions
are too high; and a “positive” one, in the form of continuous-time payments to the agent. Given an
incentive policy, we solve the agent’s problem using the stochastic maximum principle to derive alternative
representations of the optimal effort in terms of Backward Stochastic Differential Equations (BSDEs), and
showing uniqueness of the optimal effort up a certain class of policies. This also allows to prove that the
agent’s utility is (strictly) increasing with respect to incentives and to discuss the sensitivity of the optimal
effort when risk aversion or emissions’ volatility change. Under some regularity hypotheses, the problem
boils down to solving a certain nonlinear PDE, for which we give a suitable discretization scheme. We
then perform some numerical experiments to show how the agent behaves in two particular cases: in line
with intuition, the optimal effort is bell-shaped in the case of a forfeitary fee while it exhibits a monotone
behavior in presence of a linearly increasing fee. The last section is devoted to the problem of the principal,
who needs to propose an incentive plan by taking into account the subsequent agent’s behaviour. We show
that under proper assumptions the problem is similar to the agent’s one and can therefore be solved using
the same techniques. Again we provide a numerical example to illustrate in particular the optimal choice
of continuous-time incentives.

Key-words: Principal-Agent Problems, BSDEs, Emissions markets.
JEL Classification: H23
AMS Classification (2010): 91B70

1 Introduction

The reduction of greenhouse gases emissions has been a subject of crucial importance in the recent
years. In particular the introduction of the Kyoto Protocol in 1997 has stimulated an intense debate
over the optimal incentives and/or taxation schemes that better motivate the firms to reduce pollution.
The academic literature has also followed this growing interest, by focusing especially on the newly
created financial market for emission allowances, on its price formation mechanisms and its possible
effects on the firms’ production decisions (see, for example, [1], [3], [4] and references therein).
However, given that the firms’ emission reducing policies are typically only partially observable by
the regulator, these kinds of issues seem to be also closely related to the classical economic concept
of moral hazard (in the form of the so-called principal-agent problems), whose literature has by now
quite a long history (see [7] for one of the first mathematical treatments. A partial account of the
following developments is given in [6]).
Principal-agent problems in continuous time have been studied recently in particular by [11], [13] and
[6]. The usual setting is that of private contracts, where an employer (principal) needs to design
a contract in such a way that the agent will i) accept it, and ii) behave afterwards according to the
principal’s interest. The most general approach to these problems is probably the one in [6], where the
authors derive FBSDE systems to characterize the optimal contract under very general assumptions.
Similar results in a slightly different context are shown in [13]. In [11], instead, the particular structure
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of the model and the infinite horizon of the optimization problem allow to characterize the optimal
contract with an ODE, which can be solved numerically and which permits a deeper study of the
properties of the optimal players’ behavior.
This paper is the first attempt (to the best of our knowledge) to establish a link between these two
recent fields of research. The idea is essentially to apply and develop some of the ideas and techniques
of the principal-agent literature to a particular toy economic model where the principal is not a private
company but the state, who aims at minimizing the social cost of carbon emissions Xt by imposing
an appropriate incentive structure, made up by a continuous incentive process st and a final penalty
p(XT ) at maturity (which typically intervenes when emissions are too high). The emissions process
is modeled by the stochastic process

dXt = Xtl(kt)dt+XtσdW
k
t , (1.1)

where W k is a Brownian Motion, X0 = x and σ > 0. This is just a Geometric Brownian Motion
whose drift is controlled by the agent through his effort kt ≥ 0, which can be interpreted as a measure
of the efficiency of emission-reducing policies put in place at time t (a higher value of kt stands for
more effort, thus more efficiency). The function l : [0,+∞) 7→ R models the impact of effort on the
emissions evolution and is therefore assumed to be strictly decreasing. Other assumptions will be
made in order to ensure some good properties of the optimization problem and to be able to apply
the measure change techniques.
The principal (state) is assumed to observe the process X, that we call “emissions process” but which
may also be interpreted, in line with [1], as a market perception of the cumulative emissions produced
by the firm (which become completely known only at maturity T ). What the principal does not
observe is the agent’s effort k, i.e. he observes the left-hand side of (1.1) but he is not able to recover
the decomposition on the right-hand side. In particular, he does not observe the Brownian Motion
W k, where the superscript is common in the recent principal-agent literature and indicates that once
the process k is also known then the Brownian Motion becomes observable. For technical reasons, we
will not define directly the evolution in (1.1), but we will first introduce a reference filtration which is
independent of the agent’s effort and we will then get to the same representation through a suitably
defined measure change. This is called weak formulation in the literature (see [6] and [13]): it will
prove to be quite powerful to treat the agent’s utility maximization problem but we will also apply
it to the principal’s one, supposing him to know the optimal reactions of the agent to the incentive
policy that he puts in place.
As mentioned above, we consider incentive policies made up by two different components: continuous
time incentives s and a final penalty p. The incentive process s is assumed to depend on X (not
necessarily in a Markovian way) but not on k, which the principal does not observe. The final penalty
takes the form p(XT ) where p is a function from R+ to R+

∗ (more details will be given later), that
typically operates if emissions exceed a certain level Λ > 0 (see [3] for a related discussion).
We remark that production is not present in our model: the optimal agent’s choices concerning his
effort plan will only take into account the final regulatory fee and continuous time incentives that he
might gain with his effort. However, another interpretation might lead to thinking of s(t, (X)0≤s≤t) as
a continuous penalty/reward caused by the effects on production of the effort-reducing policy. Finally,
we do not model any financial market, hence we do not allow for the possibility of exchanging financial
contracts on emissions before maturity (see [1], [3], [4] for a discussion in this direction).
In the first part of the paper we introduce the agent’s problem and we give an existence and uniqueness
result for the optimal agent’s effort. The measure change techniques used in this part are similar to
the ones developed in [6] (although, due to the great generality, their hypotheses are not always
easy to interpret nor to verify). The particular model that we adopted then allows us to study
some of the properties of the optimal effort: for example, we show under which conditions it will
be increasing in the agent’s risk aversion or in the emissions’ volatility. We are also able (under
some regularity assumptions) to solve the problem numerically and to visualize the structure of the
optimal effort in some special cases: for example, we find a bell shape (in the emissions variable)

∗For the subsequent results concerning BSDEs, one could also consider penalty functions depending on the whole
process X with minor modifications, and we will use this fact when dealing with the principal’s problem. Here we do
not look for the greatest generality.
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in the case of a forfeitary fee and a monotone behavior with a linearly increasing fee (see Section
4.1 for an interpretation of these results). In the last part of this work we deal with the problem
of the principal, who needs to optimally choose an incentive plan (which is considered fixed in the
first part). Again we are able to get optimality conditions and to propose a numerical example which
shows how continuous-time incentives are optimally chosen in a special case. In particular, we will see
that continuous incentives are not necessarily decreasing with respect to emissions.
The paper is structured as follows. In Section 2 we fix an incentive structure and we introduce the
optimization problem of the firm (agent), whose solution is characterized in terms of a (F)BSDE. A
uniqueness result is also given in a particular set of effort policies. In Section 3 we give alternative
BSDE representations of the agent’s optimal effort and we find some comparison results. In particular,
we look at how the agent’s effort and expected utility are affected by a change in the incentive policy.
Section 4 is devoted to deriving a (nonlinear) PDE representation for the optimal effort under certain
conditions, along with a numerical scheme to solve it. Finally in Section 5 we deal with the principal’s
problem by giving some necessary and sufficient conditions for optimality. We finally show that in
a particular case the problem is quite similar to the agent’s one and can be solved with analogous
techniques.

2 The agent’s problem

Let W 0 be a Brownian Motion on a reference filtered probability space (Ω,F , (Ft)t∈[0,T ], P ), where
the filtration (Ft)t∈[0,T ] is assumed to be the one generated by W 0 augmented by all the P -null sets
in F . We define the market perception of the cumulative emissions, or simply emissions process X,
evolving as a driftless GMB:

dXt = XtσdW
0
t . (2.1)

Note that (Ft)t∈[0,T ] is also generated by X. In order to model the impact of the agent’s action to the
emissions process we introduce the function l : [0,+∞) 7→ R which verifies the following Assumption.

Assumption 2.1 The function l : [0,+∞) 7→ R is C3, strictly decreasing, convex, bounded and with
bounded first derivative.

We then define the change of measure Γkt = Et(l/σ ·W 0) associated to the control k (note that it is well

defined, as l is bounded), with dynamics dΓkt = Γkt l(kt)/σdW
0. In this way dW k

t := dW 0
t −

l(kt)
σ dt is a

BM for the measure (induced by) Γk. Under this weak formulation† we imagine the agent as regarding
the process (2.1) through the probability change Γk, which he knows once he decides a technology
plan k (the first introduction of this approach to optimization problems dates back to [2]). We will
denote Ek the expectation operator under the change of measure induced by k.
Before stating the agent’s problem we introduce a utility function u : R+ 7→ R and a cost function
c : R+ 7→ R with the following regularity properties:

Assumption 2.2 The following properties hold:

(i) u is a C3 utility function (i.e. strictly increasing and concave) satisfying the Inada conditions,

i.e. u′(0) = +∞ and u′(∞) = 0. Moreover, u′′

u′ (x) → −∞ as x → 0. We set u(x) = −∞ for
x < 0.

(ii) c is C3, positive, strictly increasing and convex with c′(0) = 0 and c′′(0) > 0.

†In another formulation, called ‘strong’, one starts by fixing a BM, say W , and then works directly with the controlled
process

dXk
t = l(kt)X

k
t dt+ σXk

t dWt,

which may seem more natural at first sight, and we would not need all of the assumptions on l that ensure the well
posedness of the change of measure. Apart from this, we preferred the weak formulation for many reasons: for example,
it allows to consider a wider class of continuous time incentive policies (i.e. those depending on the history of X) and it
requires no stringent conditions on the penalty function, such as differentiability and convexity. As reported in [6], the
two methods have sometimes been used together in the literature even if the connection between the two is not always
clear and it may hide some subtle measurability issues. We will give some more details in the sequel.
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The utility function u models the continuous-time part of the agent’s total utility, the one that
accounts for the effort plan and continuous-time incentives. Remark that the last condition in its
characterization is satified in the most common cases, i.e. for power and logarithmic utilities.
The function c captures the monetary cost associated to effort at each date. It is increasing to reflect
the fact that more effort is more costly, while the other technical assumptions (which are satisfied by
the common quadratic cost function) will be needed to derive our BSDE representation. Remark that
we only model variable costs connected to effort plans, there are no fixed costs linked to increasing or
decreasing effort.

Definition 2.1 An admissible incentive policy (st)0≤t≤T is a positive Ft-adapted stochastic process
such that c(0) < m ≤ st ≤M for some 0 < m < M .
A penalty function p is called admissible if p(XT ) ∈ L2+α(Ω, P ) for some α > 0.

In this section we will consider an admissible incentive structure (s, p) to be fixed, and we will be
concerned with the optimal agent’s reaction. To this aim, we define his admissible effort strategies.

Definition 2.2 An admissible effort policy (kt)0≤t≤T is a positive Ft-adapted stochastic process such
that

E

[∫ T

0

|u(st − c(kt))|2+αdt

]
<∞

for some α > 0. It is strongly admissible if kt ≤ c−1(st − ε) a.s. ∀t ∈ [0, T ] for some ε > 0.

We will also use the expression “ε-admissible” with the obvious meaning.

Remark 2.1 It is clear that a strongly admissible effort policy is admissible. Moreover, since s is
bounded, an admissible k must also be bounded. If u(0) is finite, then admissibility of k is equivalent
to simply requiring kt ≤ c−1(st) a.s. ∀t ∈ [0, T ].

For an admissible k we can now write down the expected agent’s utility as

V (k) = V (s,p)(k) = Ek

[∫ T

0

u(st − c(kt))dt− p(XT )

]

= E

[∫ T

0

Γkt u(st − c(kt))dt− ΓkT p(XT )

] (2.2)

where X evolves according to (2.1). The implicit assumption in (2.2) is that the agent’s utility
separates into two components: a continuous-time part which is captured by u and a lump part at
maturity T which is described by p. Therefore the function p is to be interpreted as the (dis)utility the
agent gets from the final fee payment, and not as a penalty function tout court (unless risk neutrality
is assumed). We do not state it explicitly at this stage but we mainly think of p as a nondecreasing
function.
For a given admissible incentive structure (s, p), the agent needs to optimally choose his effort plan,
that is he must solve the optimization problem

v(s,p) := sup
k
V (s,p)(k) (2.3)

where the sup is taken over admissible effort policies k.

2.1 Necessary conditions

In order to characterize the solution in terms of a BSDE we will apply the stochastic maximum
principle (hereafter SMP), as stated in Theorem 3.2 in [12]. A crucial step in the application of this
kind of results is the choice of the state variable(s), as different choices generally lead to different
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conditions. The peculiarity of the weak formulation lies in the fact that we can take Γk as the state
variable in the optimization, while XT is considered as a fixed element of the reference probability
space (it does not depend on the control under this formulation). This is quite an advantage as it
allows to work under no regularity assumptions on the penalty function p nor on the incentive process
s. We remark in particular that no convexity requirements are imposed on p. Choosing Γk as state
variable the Hamiltonian of the problem can be expressed as

H(t, kt, st, Yt, Zt) = Γkt [Ztl(kt)/σ + u(st − c(kt))], (2.4)

where (Y,Z) are the adjoint variables which follow the BSDE{
dYt = [−Ztl(kt)/σ − u(st − c(kt))]dt+ ZtdW

0
t

YT = −p(XT ).
(2.5)

We say that a control (k∗t )0≤t≤T is optimal if it reaches the supremum in the definition of v(s,p). The
next result gives some necessary conditions for optimality.

Proposition 2.1 Let k∗ be an optimal strongly admissible control. Then there exist adapted processes
(Y, Z) satisfying (2.5) with k = k∗ and the optimal control k∗ satisfies{

σu′(st − c(k∗t ))c′(k∗t ) = Ztl
′(k∗t ) on {k∗t > 0}

σu′(st − c(k∗t ))c′(k∗t ) ≥ Ztl′(k∗t ) on {k∗t = 0}
(2.6)

Proof. We will apply the SMP. The non-smoothness of p does not represent a problem since we use
Γk as state variable. In the notation of [12], we have h(ΓkT ) = −ΓkT p(XT ), where XT is independent
of the control. Hence h′(ΓkT ) = −p(XT ) and h′′(ΓkT ) = 0. However, in order to work as it is, the SMP
requires that (k,Γ) 7→ Γu(s− c(k)) be Lipschitz in both variables. The problem is partially solved by
assuming s to be bounded, but there still remains an issue when k is close to c−1(s), and this is where
strong admissibility gets in. Let εn → 0 and define a sequence of Lipschitz functions ũn(x) which

coincide with u(x) for x ≥ εn. Also define V
(s,p)
n (k) by replacing u with ũn in the definition of the

problem. By definition k∗ is ε-admissible for some ε > 0, therefore we have that V
(s,p)
n (k∗) = V (s,p)(k∗)

for n ≥ n0. Take 0 < ε0 < ε and an ε0-admissible k, then V (s,p)(k) ≤ V
(s,p)
n (k∗) = V (s,p)(k∗) for

n ≥ n0. We also have V
(s,p)
n (k) = V (s,p)(k) for n ≥ n1 and so V

(s,p)
n (k) ≤ V

(s,p)
n (k∗) for n ≥ n1. It

follows that k∗ maximizes Vn over all ε0-admissible k, when n ≥ n1. Therefore the SMP can be applied
to this new problem, implying that k∗ satisfies (2.6) replacing u with ũn and adding a supplementary
condition when k = c−1(s − εn). However since k∗ is ε-admissible the replacement is irrelevant and
the supplementary condition is never satisfied, so we directly have (2.6). �

Remark 2.2 The requirement of strong admissibilty in the previous result can also be found in the
related literature (see [6]) under different (and usually more complex) forms. In our context it could
be replaced by simple admissibility if, given the optimal admissible policy k∗, we could find a sequence
kn converging uniformly to k∗ and such that kn is optimal when we only consider controls such that
kt ≤ c−1(st − εn), with εn ↓ 0. Indeed for each εn we can define a function ũn as in the previous
proof, so that ũn → u pointwise. Then the necessary conditions hold for (Y n, Zn) and kn which are
the analogous variables in the problem where un replaces u. By standard properties of BSDEs (see
[8] Theorem 4.4) we have

E

[
sup

0≤t≤T
|Y mt − Y nt |2 +

∫ T

0

|Zmt − Znt |2dt

]

≤ CE

[∫ T

0

[(Zmt )2|l(knt )− l(kmt )|2 + |un(st − c(knt ))− um(st − c(kmt ))|2]dt

]
→ 0,

recall that l is bounded, hence (Y n, Zn) converge to some (Y, Z) which satisfy (2.5) and the Hamilto-
nians also converge.
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Proposition 2.1 leads to the representation of the target volatility process as{
Ẑt(s, p, k) = σ u

′(st−c(kt))c′(kt)
l′(kt)

≤ 0 on {kt > 0}
Ẑt(s, p, k) ≥ 0 on {kt = 0}

(2.7)

It is called target (see [13]) because, if the principal wants to induce a strongly admissible technology
plan k, it is necessary to act on the incentives s and/or on the fee p in such a way that the volatility
process in (2.5) satisfies (2.7).

Definition 2.3 A policy (s, p, k) is said to be

• promise-keeping if (s, p, k) imply a solution Y to the BSDE (2.5) with volatility process Z
satisfying (2.7).

• implementable if, given (s, p), the agent optimally chooses the recommended actions k.

The term promise-keeping (taken from [13]) expresses the idea that under this condition the volatility
process Z “keeps the promise” of being equal to its target level.

2.2 Sufficient conditions

In Proposition 2.1 we proved that if (s, p, k) is implementable and k is strongly admissible, then it
is promise-keeping. We now aim at proving a converse implication, for which we need a preliminary
technical discussion.
For a given admissible effort process k we can rewrite (2.1)-(2.5) as

dXt = l(kt)Xtdt+ σXtdW
k
t

dYt = −u(st − c(kt))dt+ ZtdW
k
t

X0 = x, YT = −p(XT )

(2.8)

This is a simple kind of Forward-Backward SDE, as the link between the two equations only lies in
the terminal condition. If we could prove that

Ek

[∫ T

t

ZrdW
k
r | Ft

]
= 0 (2.9)

then we would obtain that

Yt = Ek

[∫ T

t

u(sr − c(kr))dr − p(XT ) | Ft

]

that is Yt = V
(s,p)
t (k), where V

(s,p)
t (k) is naturally defined as the conditional agent’s expected util-

ity. We could apply standard existence and uniqueness results directly to (2.8) in order to obtain

Ek
[∫ T

0
Z2
rdr
]
<∞ which would imply the result. However this can be a little bit tricky, as the system

contains the process k which is Ft-adapted, while existence results in this context would hold on the

filtration FWk

, which in general differs from F = FW 0

(though we clearly have FWk

t ⊆ FW 0

t ). Lemma
7.2 in the Appendix addresses this issue by constructing, for any admissible k, an Ft-measurable so-
lution to (2.8) which exhibits the usual integrability properties of the standard BSDE theory with
respect to any measure associated to an effort policy (boundedness of l will play an important role
via Lemma 7.1).
The following result completes Proposition 2.1 by providing necessary and sufficient conditions for
optimality. Remark that it is stated for strongly admissible policies even if the sufficient part holds
with simple admissibility.
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Proposition 2.2 A strongly admissible policy (s, p, k) is implementable if and only if it is promise-
keeping. In other words, a strongly admissible effort policy k is optimal for the agent given the incentive
structure (s, p) if and only if the (unique) process Z defined as in (2.8) with (s, p, k) satisfies condition
(2.7).

Proof. The necessary condition is just Proposition 2.1. To show sufficiency, consider an admissible
effort plan k∗ and assume that Ẑ = Ẑ(s, p, k∗) defined as in (2.8) with (s, p, k∗) satisfies condition
(2.7). The agent’s Hamiltonian is (we omit Γkt as it is positive and does not affect the maximization)

H∗(t, kt, st) = Ẑt(s, p, k
∗)l(kt)/σ + u(st − c(kt)).

We would like to show that

k∗t = argmax0≤k<c−1(st)[Ẑt(s, p, k
∗)l(k)/σ + u(st − c(k))]. (2.10)

By calling b(k) the function in the argument we can compute its first and second derivatives

b′(k) = Ẑtl
′(k)/σ − u′(st − c(k))c′(k)

b′′(k) = Ẑtl
′′(k)/σ + u′′(st − c(k))(c′(k))2 − u′(st − c(k))c′′(k)

If Ẑt < 0 then b′′(k) ≤ 0 for all k ∈ [0, c−1(st)) and b′(k∗t ) = 0 since Ẑt verifies (2.7), hence (2.10) is

true. If Ẑt ≥ 0 then b′(k) ≤ 0 for all k ∈ [0, c−1(st)), meaning that k = 0 is optimal and again (2.10)
is true. Therefore k∗ always reaches the maximum in H∗.
It remains to verify that the agent will choose k∗ when he faces incentives s and fee p. By Lemma 7.2,
the agent’s expected utility following k∗ is V (s,p)(k∗) = Y ∗0 , where (Y ∗, Z∗) is the solution of (2.5)
with k∗ replacing k. Then for any admissible k we have

V (s,p)(k)− V (s,p)(k∗) =Ek

[∫ T

0

u(st − c(kt))dt− p(XT )

]
− Ek [Y ∗0 ]

=Ek

[∫ T

0

[u(st − c(kt))− u(st − c(k∗t ))]dt+

∫ T

0

Z∗t dW
k∗

t

]

=Ek

[∫ T

0

[u(st − c(kt))− u(st − c(k∗t ))]dt+

∫ T

0

Z∗t dW
k
t

]

+ Ek

[∫ T

0

Z∗t [l(kt)− l(k∗t )]σ−1dt

]

=Ek

[∫ T

0

[H∗(t, kt, st)−H∗(t, k∗t , st)]dt

]
≤ 0,

which implies the claim since Z∗ satisfies (2.7) by assumption. Here we used the fact that, by definition,
we have that dW k∗

t = dW k
t + [l(kt) − l(k∗t )]σ−1dt. Moreover, Lemma 7.2 ensures that the expected

value of the stochastic integral in the third equality is zero. �

For later use we denote g the function appearing in the first line of the optimality condition (2.7):

g(s, k) = σ
u′(s− c(k))c′(k)

l′(k)
. (2.11)

In economic terms, this can be interpreted as the elasticity of the agent’s utility with respect to a
change in the emissions’ growth rate over a little lapse of time. The following calculation may help
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grasping this intuition.

Ek+δ
[∫ t+ε
t

dV
(s,p)
r (k + δ) | Ft

]
− Ek

[∫ t+ε
t

dV
(s,p)
r (k) | Ft

]
Ek+δ

[
1
Xt

∫ t+ε
t

dXr | Ft
]
− Ek

[
1
Xt

∫ t+ε
t

dXr | Ft
]

=
Ek+δ

[
−
∫ t+ε
t

u(sr − c(kr + δ))dr | Ft
]
− Ek

[
−
∫ t+ε
t

u(sr − c(kr))dr | Ft
]

Ek+δ
[
e
∫ t+ε
t

l(kr+δ)dr | Ft
]
− Ek

[
e
∫ t+ε
t

l(kr)dr | Ft
]

≈ −u(st − c(kt + δ))ε− [−u(st − c(kt))]ε
el(kt+δ)ε − el(kt)ε

≈ u′(st − c(kt))c′(kt)δε
el(kt)εl′(kt)δε

≈ g(st, kt)/σ.

Some of the sensitivity results in Section 3 will make reference to this quantity.

Remark 2.3 Standard procedures can be used to look for a candidate solution to (2.8), when the
policy (s, p, k) is fixed and Markovian (i.e. s and k depend only on t and Xt). In particular, by
assuming that Yt = θ(s,p,k)(t,Xt) then θ is solution (supposing it is sufficiently regular) of{

θt + 1
2θxxx

2σ2 + xl(k(t, x))θx + u(s(t, x)− c(k(t, x))) = 0

θ(T, x) = −p(x)
(2.12)

and Zt = θ
(s,p,k)
x (t,Xt)σXt.

In this way the implementability constraints on the volatility process Z given in (2.7) can be re-
expressed in terms of the solution of the PDE (2.12)‡. We can therefore state that a Markovian policy
(s, p, k) is implementable if and only if the solution θ(s,p,k)(t,Xt) to (2.12) satisfies{

θ
(s,p,k)
x (t, x) = u′(st−c(kt))c′(kt)

xl′(kt)
≤ 0 if kt > 0

θ
(s,p,k)
x (t, x) ≥ 0 if kt = 0

This result also has a clear economic intuition. The quantity xl′(k) represents the marginal average
emissions’ reduction when effort is increased, hence xl′(k)θx is the marginal expected utility benefit
from increasing effort. On the other hand, u′(s−c(k))c′(k) is the marginal cost of effort. In equilibrium,
the marginal benefit should be equal to the marginal cost. When θx ≥ 0 it means that the marginal
expected utility benefit from increasing effort is negative, a pathological situation that will typically
only occur when p is increasing, i.e. it is no longer a penalty but a reward for polluting. In this
unrealistic case the optimal effort is going to be zero.
At this stage, however, our conditions are too weak to ensure the existence of a classical solution to
(2.12). Other PDE results will be derived in Section 4.

2.3 Existence of the optimal effort

We still consider an admissible incentive structure (s, p) to be fixed. In the following we will investigate
the question of whether an optimal effort k∗ exists and is unique. The main ingredient to do this is
going to be the inversion of the the conditions for optimality stated in (2.7). This is done in the
following Lemma.

Lemma 2.1 Given 0 < m < s ≤M and z ∈ R, there exists a unique k = F (s, z) satisfying{
z = σ u

′(s−c(k))c′(k)
l′(k) = g(s, k)(≤ 0) if k > 0

z ≥ 0 if k = 0
(2.13)

‡This result also gives an idea of how one can heuristically recover the optimal effort without solving a nonlinear
equation, i.e. one can solve the PDE (2.12) backwards with a standard implicit finite-difference scheme by making
sure that the discretized versions of the implementability conditions be satisfied at each point in space and time. This
procedure gives rise, at each time step, to a nonlinear equation with a number of unknowns equal to the dimension of
the spacial grid, which is usually well handled numerically by Matlab.
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The function F (s, ·) is nonincreasing, Lipschitz and continuously differentiable on R \ {0}.
If 2l′′(k)2 − l′(k)l(3)(k) ≥ 0 and c(3)(k) ≥ 0 then F (s, ·) is concave on (−∞, 0].

Proof. See Appendix.

Inverting the conditions in (2.7) through the function F allows us to rewrite (2.5) by incorporating the
implementability constraints inside the BSDE. In this spirit, to any admissible (s, p) we can associate
the system 

dXt = XtσdW
0
t

dYt = [−Ztl(F (st, Zt))/σ − u(st − c(F (st, Zt)))]dt+ ZtdW
0
t

X0 = x, YT = −p(XT )

(2.14)

By Proposition 2.2 the existence of a unique solution to this equation is equivalent to the existence of
an optimal effort policy, which is characterized by posing kt = F (st, Zt). Theorem 2.1 gives such an
existence result.

Theorem 2.1 There exists an admissible optimal effort k∗ for the agent’s problem (2.3). Uniqueness
holds in the class of strictly admissible policies.

Proof. We want the FBSDE (2.14) to have a unique solution (Y,Z). Since it is decoupled, we
can treat it as a simple BSDE as far as existence is concerned. Hence it is enough to check that
f(s, z) := u(s− c(F (s, z))) + zl(F (s, z))/σ is uniformly Lipschitz continuous in z. We have

fz(s, z) = l(F (s, z))/σ + Fz(s, z)[zl
′(F (s, z))/σ − u′(s− c(F (s, z)))c′(F (s, z))].

Recall that F (s, ·) is not differentiable in 0 and therefore the previous expression should be interpreted
at first as a right/left derivative in zero. Let us focus on the second term: if z ≤ 0 the term in brackets
is zero by definition of F , while if z > 0 then Fz(s, z) = 0. Therefore f is differentiable and we have
fz(s, z) = l(F (s, z))/σ, which is bounded by assumption. By admissibility of s and p and Theorem
6.2.1 in [10] equation (2.14) has a unique solution (Y, Z) and therefore kt = F (st, Zt) is an optimal
effort. We need to verify that it is admissible, i.e. that

E

[∫ T

0

|u(st − c(kt))|2+αdt

]
<∞.

for some α > 0. Considering the function a(s, z) = u(s− c(F (s, z))), we have for z < 0

0 ≤ az(s, z) = −u′(s− c(F ))c′(F )Fz

= − u′(s− c(F ))c′(F )l′(F )2

l′(F )[−u′′(s− c(F ))c′(F )2 + u′(s− c(F ))c′′(F )]− l′′(F )[u′(s− c(F ))c′(F )]

=
c′(F )l′(F )2

l′(F )[u
′′

u′ (s− c(F ))c′(F )2 − c′′(F )] + l′′(F )c′(F )
.

Since u′′

u′ (x) → ∞ as x → 0 by Assumption 2.2 we deduce that az(s, z) → 0 as z → −∞. Moreover,
az−(s, 0) is finite and az(s, z) = 0 for z > 0. It follows that a(s, z) has a sublinear growth in z, i.e. we
can write |a(s, z)| ≤ K1 + K2|z|1/β for some β > 1 and constants K1,K2 > 0 (which can be chosen
independently of s taking into account m ≤ s ≤M). Now if we take α = 2β − 2 > 0 we obtain

E

[∫ T

0

|u(st − c(kt))|2+αdt

]
≤ K1 +K2E

[∫ T

0

|Zt|2dt

]
<∞,

Therefore kt = F (st, Zt) is indeed admissible.
As for uniqueness, the results follows from the fact that the necessary conditions in Proposition 2.1
only hold in the class of strongly admissible policies. �
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In the next Section we will see that under additional regularity assumptions on the penalty function
we can ensure that the optimal effort coming from (2.14) is strongly admissible.

3 The optimal effort and comparison results

Having characterized the agent’s value function and optimal effort in terms of the solution of a BSDE,
it is now natural to look at how the solution is affected by a change in the parameters (i.e. a change
in the incentive structure). As a starting point, the next lemma shows that the agent’s value function
v(s,p) defined in (2.3) reacts positively to higher incentives or a lower final penalty. This is quite
intuitive and it could in part also be deduced directly from definition (2.3) (though the last claim
seems to require the comparison theorem for BSDEs).

Lemma 3.1 Assume that we have two admissible incentive policies (s, p) and (s̄, p̄) such that s̄t ≥ st
a.s. for all t and p̄(x) ≤ p(x) for all x ≥ 0. Then v(s̄,p̄) ≥ v(s,p). Moreover, if p̄(x) < p(x) on a set
of strictly positive Lebesgue measure, or if s̄t > st on a set of strictly positive measure dt× dP , then
v(s̄,p̄) > v(s,p).

Proof. The agent’s conditional value function given incentives s follows the BSDE{
−dYt = f(st, Zt)dt− ZtdW 0

t

YT = −p(XT )
(3.1)

where f(s, z) = zl(F (s, z)) + u(s− c(F (s, z))). We have that

fs(s, z) = zl′(F )Fs + u′(s− c(F ))[1− c′(F )Fs]

= [zl′(F )− u′(s− c(F ))c′(F )]Fs + u′(s− c(F ))

The first term in brackets is zero when z ≤ 0, while Fs = 0 when z ≥ 0, thus

fs(s, z) = u′(s− c(F )) > 0

since u is strictly increasing. This implies that f(s′t, z) ≥ f(st, z) for all z ∈ R and the claim follows
by standard comparison theorems for BSDEs (see [10], Theorem 6.2.2). �

We now turn to the study of the optimal effort. Since it is defined as a function of the Z-part of BSDE
(2.14), the starting point must be a better characterization of Z. To our best knowledge, comparison
theorems for the Z-part of a BSDE seem to be lacking in the literature, therefore we will directly look
for a new BSDE solved by Z. This procedure, however, requires stronger regularity conditions on the
incentives and on the final penalty function p. For the rest of the section we will therefore work under
the following additional assumption.

Assumption 3.1 Continuous time incentives are Markovian, i.e. st = s(t,Xt), where (with a slight
abuse of notation) s : [0, T ]×R+ 7→ R+ is C1,2, bounded (m ≤ s ≤M) and with bounded derivatives.
Moreover sx(·, x) ≤ 0.
The functions x 7→ p(x) and x 7→ xp′(x) defined on R+ are positive, bounded and C∞.

Remark that supposing sx(·, x) ≤ 0 and p′(x) ≥ 0 reflects the natural assumption that higher emissions
should induce lower incentives and a higher final fee§.
We are now able to give a BSDE characterization of the optimal effort that results from BSDE (2.14).
Recall that it might not be the unique optimal effort, in the sense that there may exist other optimal
policies which are not strongly admissible.

§Remark that the hypothesis sx(·, x) ≤ 0 is indeed quite natural but it might not be always optimal for the principal:
in certain cases he may be willing to offer higher incentives when emissions are high, with the aim of inducing more
effort and thus reduce the final social cost at maturity. See Section 5.
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Proposition 3.1 Under Assumption 3.1, if the optimal effort is strongly admissible then it follows
the BSDE {

−dkt =
[
G(t,Xt, kt)Θ

2
t +D(t,Xt, kt)Θt + C(t,Xt, kt)

]
dt−ΘtdW

0
t

kT = F (s(T,XT ),−σXT p
′(XT ))

(3.2)

where

G(t, x, k) =
1

2

gkk
gk

D(t, x, k) =
l(k)

σ
+
sxσx

g2
k

(gkkgs + gskgk)

C(t, x, k) =
gs
gk

∂

∂t
s+

u′(s− c(k))

gk
sxσx+

1

2

σ2x2

gk

(
gsss

2
x + gssxx +

gkkg
2
s

g2
k

s2
x

)
(we omit the argument (s, k) from g and its derivatives, and (t, x) from s and its derivatives for the
sake of clarity).

Proof. We start from the dynamics of the optimal agent’s expected utility Y
dXt = σXtdW

0
t

dYt = −f(s(t,Xt), Zt)dt+ ZtdW
0
t

X0 = x

YT = −p(XT )

(3.3)

where f(s, z) = zl(F (s, z))/σ + u(s− c(F (s, z))).
We want to recover the dynamics of Zt starting from (3.3). Recall first that f is continuously
differentiable in both variables with fz(s, z) = l(F (s, z))/σ and fs(s, z) = u′(s − c(F (s, z))): the
first is bounded by assumption while the second can also be considered bounded since we assume a
strongly admissible effort policy. Therefore we can assume that Yt = L(t,Xt) where L is C1,2 (see
Chapter 4, Theorem 2.3 in [8]). As a consequence we can write Zt = Lx(t,Xt)σXt. We also have
∇Yt = Lx(t,Xt)∇Xt, which implies

Zt = σXt(∇Xt)
−1∇Yt,

where ∇ denotes the derivative of the process with respect to x. The dynamics of the tangent processes
are given by 

d∇Yt = −[fz(st, Zt)∇Zt + fs(st, Zt)sx(t,Xt)∇Xt]dt+∇ZtdW 0
t

d∇Xt = σ∇XtdW
0
t

d(∇Xt)
−1 = −σ(∇Xt)

−1dW 0
t + σ2(∇Xt)

−1dt.

We have therefore d[Xt(∇Xt)
−1] = 0, so that Xt(∇Xt)

−1 = x and dZt = σxd∇Yt, hence Z follows
the BSDE {

dZt = −[l(F (st, Zt))/σNt + u′(st − c(F (st, Zt)))sx(t,Xt)σXt]dt+NtdW
0
t

ZT = −σXT p
′(XT )

(3.4)

where we have identified Nt with σx∇Zt.
Now the optimal effort is given by kt = F (st, Zt) = F (s(t,Xt), Zt), therefore by Itô’s rule we get

dkt =Fs(st, Zt)sx(t,Xt)dXt +
1

2
σ2X2

t [Fss(st, Zt)sx(t,Xt)
2 + Fs(st, Zt)sxx(t,Xt)]dt

+ Fz(st, Zt)dZt +
1

2
Fzz(st, Zt)N

2
t dt+ Fsz(st, Zt)sx(t,Xt)NtXtσdt+ Fs(st, Zt)

∂

∂t
s(t,Xt)dt

=[−G(t,Xt, kt)Θ
2
t −D(t,Xt, kt)Θt − C(t,Xt, kt)]dt+ ΘtdW

0
t
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where we identified Θt = Fz(s, Zt)Nt + Fs(s, Zt)sx(t,Xt)σXt. In the previous computation we used
the fact that

Fz(s, z) =
1

gk(s, F (s, z))
,

therefore

Fzz(s, z) =
−gkk(s, F (s, z))Fz(s, z)

[gk(s, F (s, z))]2
,

and finally
Fzz
F 2
z

(s, z) = −gkk(s, F (s, z))

gk(s, F (s, z))
.

Similarly we have that Fs = − gs
gk

, Fss = 2 gskgs
g2k
− gss

gk
, Fsz = − gsk

g2k
.

One last thing to be remarked is that we replaced fs(st, Zt) with fs(st, g(st, kt)), and this is only
justified when Z in (3.4) is negative. To prove this, note first that the term fs(s, z)sx(t, x) = u′(s −
c(F (s, z)))sx(t, x) in the generator of Z in (3.4) is negative by Assumption 3.1. Since we also have
ZT ≤ 0 by Assumption 3.1, the comparison theorem gives that Zt ≤ 0.
The dynamics of the optimal effort kt = F (st, Zt) is therefore given by (3.2) as claimed. �

Remark 3.1 Using a strong formulation of the problem would lead to a state/adjoint system of the
type 

dXt = l(F (st, Ỹt))Xtdt+ σXtdWt

dỸt = −σu′(st − c(F (st, Ỹt)))sx(t,Xt)Xtdt+ Z̃tdWt

ỸT = −σp′(XT )XT ,

(3.5)

which is very similar to (3.4). Hence under this formulation the adjoint variable Ỹ would play the
role of Z in the weak formulation, which would require stronger regularity assumptions on the penalty
function from the beginning. Moreover, the drift component l(F ) moves from the backward to the
forward part of the system, thus making (3.5) a coupled FBSDE (whose solvability is in general harder
to prove).

3.1 Constant incentives

We now suppose that s is constant (that is, it no longer represents incentives but a constant agent’s
revenue). BSDE (3.2) for the agent’s effort simplifies significantly to{

−dkt =
[
G(s, kt)Θ

2
t + l(kt)

σ Θt

]
dt−ΘtdW

0
t

kT = F (s,−σXT p
′(XT ))

(3.6)

where G(s, k) = 1
2
gkk(s,k)
gk(s,k)

¶, while Z solves{
dZt = − l(F (s,Zt))

σ Ntdt+NtdW
0
t

ZT = −σXT p
′(XT )

(3.7)

Remark 3.2 Since we assume ZT to be bounded, the comparison theorem gives us that Zt is uniformly
bounded, therefore the optimal effort is strongly admissible and (3.6) holds automatically without
assuming strong admissibility as we did in Proposition 3.1.

We can also prove that Ek
[∫ T
t
NrdW

k
r | Ft

]
= 0, where k = F (s, Zt) is the optimal effort policy.

Indeed we have that dZt = NtdW
k
t , and so Z is a uniformly bounded local martingale under the

measure Γk, hence a true martingale. This gives the representation

Zt = −Ek [σXT p
′(XT ) | Ft] .

¶The definition of G has been slightly changed and adapted to this particular case. We believe this is pretty natural
and hope it will cause no confusion.
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We now aim at studying the effects of risk aversion on the optimal effort. In order to do so we consider
the power utility function u(x) = uγ/γ, parametrized by γ < 1. The next result gives some sufficient
conditions for the optimal effort to be increasing with respect to risk aversion.

Proposition 3.2 In the power utility case, if

• kT ≤ c−1(s− 1), or equivalently

p′(x)x ≤ c′

|l′|
(
c−1(s− 1)

)
(3.8)

for all x ∈ R+,

• c(3)(k) ≤ 0, l(3)(k) ≤ 0,

then the optimal effort is decreasing in γ, therefore increasing in the risk aversion coefficient 1− γ.

Proof. Remark that now the functions F and G also depend on γ, so we are allowed to differentiate
them with respect to this variable. We want to apply the comparison theorem in [5] to the quadratic
BSDE (3.6), therefore we need to study the reaction of its generator and terminal condition to a

change in γ. As for the terminal condition, remark that Fγ(s, ZT ) = − gγ(s,kT )
gk(s,kT ) , where we recall

that in this case g(s, k) = σ u
′(s−c(k))c′(k)

l′(k) = σ γ(s−c(k))γ−1c′(k)
l′(k) . Hence we have that Fγ(s, ZT ) ≤ 0 if

gγ(s, kT ) ≤ 0, or equivalently kT ≤ c−1(s − 1). This gives the first condition of the Proposition (by
replacing kT = F (s,−σXT p

′(XT ))).
We now turn to the generator of (3.6): we compute

Gγ(s, k) =−
{
c′(k)l′(k)

[
(γ − 1)2c′(k)4l′(k) + 3(s− c(k))2l′(k)c′′(k)2

+(2γ − 3)(s− c(k))c′(k)3l′′(k)− (s− c(k))2c′(k)
(

3c′′(k)l′′(k) + l′(k)c(3)(k)
)

+(s− c(k))c′(k)2
(

(3− 2γ)l′(k)c′′(k) + (s− c(k))l(3)(k)
)]}

×
(

(s− c(k))
(
(γ − 1)c′(k)2l′(k) + (−s+ c(k))l′(k)c′′(k) + (s− c(k))c′(k)l′′(k)

)2)−1

and we remark that Gγ(s, k) ≤ 0 if c(3)(k) ≤ 0 and l(3)(k) ≤ 0, which gives the second condition of
the Proposition.
In order to conclude with the the comparison theorem stated in [5], Theorem 2.6, we need to ensure
that the coefficient of the quadratic term in the generator stays bounded, which is guaranteed by the
following observation: since Zt is uniformly bounded we deduce that kt is bounded away from c−1(s)−ε
for some ε > 0. Now take a bounded function G̃(s, k) which coincides with G when k ≤ c−1(s) − ε:
we deduce that the optimal effort still solves (3.6) with G replaced by G̃. �

The first condition in the previous result imposes that the optimal effort towards maturity must not
be too high in relation to the agent’s revenue, otherwise a higher risk aversion might induce the agent
to decrease effort and save some money. The second condition is probably less intuitive and is related
to the rate of increase of costs and benefits when effort is increased. It is going to be satisfied in the
model that we consider in Section 4, i.e. by a quadratic cost function and l(k) = 1−k

1+k .
The reaction of the optimal agent’s expected utility to a change in risk aversion is less clear to
investigate. To get an intuition of why this is so, notice that for example under the conditions of
Proposition 3.2 a higher value of γ reduces the optimal effort: this increases the continuous-time part
of the agent’s utility but will also in general increase final emissions, thus reducing the expected utility.
We now examine the effects of volatility on the effort.

Proposition 3.3 Suppose the process N solution of (3.4) is negative for any σ > 0. Then if l(k) ≤ 0
(resp l(k) ≥ 0) the optimal effort is increasing (resp. decreasing) in σ.
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Proof. We use (3.6), and we remark that

∂

∂σ
F (s,−σxp′(x)) = 0

(since F also depends on σ through g) and that G does not depend on σ. If Nt ≤ 0 then Θt ≥ 0 by
the proof of Proposition 3.1, and the claim follows by the comparison theorem for quadratic BSDEs
in [5], using the function G̃ as explained in the proof of Proposition 3.2. �

The previous result requires the knowledge of N , which can be computed by solving the nonlinear
PDE (4.1) that will be presented in the next section.
As for the dependence of the optimal effort on revenues s, the analysis is more complex: if we consider
the terminal condition in (3.2), we see that Fs(s, z) = −Fzgs(s, F ) ≥ 0, but the reaction of the
generator to a change in s is harder to examine.

3.2 Impatience rate

Sometimes an impatience rate δ ≥ 0 is incorporated in principal-agent models (see [11]) in order to
account for the time preferences of the agent, in the sense that he gives a lower weight to cash flows
that are far away in the future. This can be easily done in our framework by reformulating the agent’s
expected utility in this way:

V (k) = Ek

[∫ T

0

e−δtu(st − c(kt))dt− e−δT p(XT )

]
.

All the results above can be readily adapted with minor modifications. In particular the agent’s
conditional value function given constant incentives s now follows the BSDE{

−dYt = fδ(t, s, Zt)dt− ZtdW 0
t

YT = −e−δT p(XT )

where fδ(t, s, z) = zl(F δ(t, s, z)) + e−δtu(s− c(F δ(t, s, z))) and F δ(t, s, z) is now the inverse (in k) of

gδ(t, s, k) = e−δtσ
u′(s− c(k))c′(k)

l′(k)
. (3.9)

In the same way as before we obtain the following BSDE for Z:{
dZt = − l(F

δ(t,s,Zt))
σ Ntdt+NtdW

0
t

ZT = −e−δTσXT p
′(XT ),

(3.10)

and the optimal effort therefore solves{
−dkt =

[
−δ g(t,s,kt)gk(t,s,kt)

+G(t, s, kt)Θ
2
t + l(kt)

σ Θt

]
dt−ΘtdW

0
t

kT = F δ(t, s,−e−δTσXT p
′(XT )) = F (s,−σXT p

′(XT ))
(3.11)

where G(t, s, k) = 1
2
gδkk(t,s,k)

gδk(t,s,k)
= 1

2
gkk(t,s,k)
gk(t,s,k) . Here we used the fact that ∂

∂tF
δ(t, s, z) = δ g

δ(t,s,F δ)

gδk(t,s,F δ)
=

δ g(t,s,F
δ)

gk(t,s,F δ)
. Now since gδ

gδk
≥ 0 and G does not depend on δ, we deduce the following result.

Proposition 3.4 The optimal effort is decreasing in the impatience rate δ.

Since the terminal condition in (3.11) does not depend on δ, we see that the changes will be more
relevant as the time to maturity increases. Remark that this result also holds when incentives s are
not necessarily constant, though we presented it in this simpler case.
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4 Numerical computation of the optimal contract

We still assume that continuous-time incentives are constant, or at least space independent (i.e. s =
s(t)).
From (3.7) and Assumption 3.1 we can write Zt = φ(t,Xt) where φ solves (in the classical sense, see
[8], Chapter 9, Section 2.1) {

φt + 1
2σ

2x2φxx + l(F (s, φ))xφx = 0

φ(T, x) = −σxp′(x)
(4.1)

which is usually easier to treat than (3.6). The idea is therefore to approximate Z first and then
recover k. We set y = log x and θ(t, y) = φ(T − t, x) from which we get{

θt − 1
2σ

2θyy − b(θ)θy = 0

θ(0, y) = −σeyp′(ey)
(4.2)

where b(θ) = l(F (s, θ))− 1
2σ

2. The solution to (4.2) can be approximated numerically using a standard
scheme that we briefly recall and adapt to our case (see [8], Chapter 9 for details).
We set the space and time steps h > 0, ∆t > 0. We let yi = ih, i = 0,±1, ...,±i0, and tj = j∆t,
j = 0, 1, ..., N . We denote hji = h(tk, yi) the grid value of the function h, and hj = h(tj , ·). We define
for each j the approximate solution wj by the following recursive steps:

(i) Step 0 : Set w0
i = −σeyip′(eyi), i = 0,±1, ...,±i0; use linear interpolation to obtain a function

w0(y) defined on y ∈ R.

(ii) Step j : Suppose that wj−1(y) is defined for y ∈ R and set
bji = b(wj−1

i )

ȳji = yi − bji∆t, w̄j−1
i = wj−1(ȳji )

δ2(w)ji = h−2[wji+1 − 2wji + wji−1]

Obtain the grid values for the j-th step approximate solution by solving

wji − w̄
j−1
i

∆t
=

1

2
σ2δ2(w)ji .

Use again linear interpolation to extend the grid values to all y ∈ R.

Define the error function on the grid by ζji = θji − w
j
i , where θji represent grid values for the true

solution. One can prove that
sup
j,i
|ζji | = O(h+ ∆t).

The approximation for the optimal effort is then recovered by setting kji = F (s, wji ). Since F has
bounded derivatives, the same O(h + ∆t) rate of convergence holds for the approximation of the
optimal effort.
We just mention for completeness (without discussing regularity and convergence of the numerical
schemes) the two other possible ways to compute the optimal effort. In the first we use (3.6) and
supposing kt = ϕ(t,Xt) we recover ϕ as the solution to{

ϕt + 1
2σ

2x2
[
ϕxx +G(s, ϕ)(ϕx)2

]
+ l(ϕ)xϕx = 0

ϕ(T, x) = F (s,−σxp′(x)).
(4.3)

Another idea is to write the analogue of the PDE (2.12) that takes into account the implementability
constraints by forcing kt = F (s, Zt) = F (s, θxσx):{

θt + 1
2θxxσ

2x2 + xθxl(F (s, θxσx)) + u(s− c(F (s, θxσx))) = 0,

θ(T, x) = −p(x).
(4.4)
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4.1 Interpretation of results

For our numerical experiments we take the functions c(k) = k2/2, u(x) = 2
√
x and l(k) = 1−k

1+k (the
first two are quite standard, the third is just a decreasing bounded function on [0,∞) with bounded
first derivative).
Figure 1 shows the numerical approximation of the optimal effort by choosing (a proper regularization
of) a penalty function of the type p(x) = λ1[Λ,∞)(x) (i.e. a fixed amount is charged when a certain
level of emissions is exceeded). The economic interpretation is straightforward: since s is time and
space independent, it can be more naturally considered as an income flow, and not as a real incentive
policy. Therefore in this example we have in a sense isolated the effects on effort provided by the
final fee to pay at maturity T . At every date the optimal effort is bell-shaped: loosely speaking, when
emissions are too high the firm has little hope to reduce them and finds no reason to bear the cost
of trying (the fee being fixed); on the other hand, when emissions are sufficiently small the agent
can be reasonably sure that they will end up below Λ even without any positive effort. As maturity
approaches, the short time left to act makes it optimal to take on some effort only when emissions are
close to Λ.
The situation changes if we choose a penalty function of the type p(x) = λ(x − Λ)+, corresponding
to a situation where the agent is charged proportionally for each unit of emissions that exceeds a
certain threshold Λ at maturity. This case is shown in Figure 2: we see that it is no more optimal to
stop putting effort when emissions are high, since there is always an opportunity to reduce the final
payment.
In Figure 3 we plotted some simulated paths by using (1.1) and the optimal effort dynamics of Figure 2:
we observe a natural tendency for emissions to be driven close to the threshold level at maturity.
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Figure 1: Optimal effort dynamics with a constant incentive policy st = 10 and fee p(x) = 41[3,∞)(x).
Parameter values: σ = 0.22, γ = 0.5, T = 2.5.

The effort dynamics of the previous examples can be considered as a benchmark situation when there
are no continuous-time incentives (or they are trivially constant). The principal can further modify
this basic effort structures by properly acting on s, according for example to some social cost function
(as we will see the next section).
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Figure 2: Optimal effort dynamics with a constant incentive policy st = 10 and p(x) = (x− 5)+
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Figure 3: Simulation of typical emissions paths following the agent’s optimal effort with a constant
incentive policy st = 10 and different starting values. The red line shows Λ = 5.
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5 The principal’s problem

We will stick to the weak formulation to treat the principal’s optimization problem, in order to avoid
measurability issues and inconsistencies that can arise when one switches from the two formulations
(as we partially mentioned in the Introduction and as is also reported in [6]).
In the agent’s case we were trying to find the best possible effort policy k given an incentive structure
made up by a penalty function p and continuous-time payments s. When considering the principal,
we therefore look for a criterion to find the couple (s, p) that maximizes a certain utility functional.
To do so, we model the principal’s expected profit given (s, p, k) as

I(s, p, k) = Ek

[
p1(p(XT ))− p2(XT )−

∫ T

0

u1(sr)dr

]

= E

[
ΓkT p1(p(XT ))− ΓkT p2(XT )−

∫ T

0

Γkru1(sr)dr

]
,

(5.1)

where

(i) p1 : R 7→ R is a concave function, C2 and with bounded derivatives. It relates the final (dis)utility
of the agent to the final utility of the principal.

(ii) p2 : R+ → R+ has the role to capture the social costs related to the level of emissions. We
assume p2(XT ) ∈ L2+α for some α > 0.

(iii) u1 : R+ 7→ R is a C2 utility function (i.e. increasing and concave) that takes into account
continuous-time payments to the agent.

If we assume, however, that the state can forecast the optimal agent’s response given (s, p), it is
convenient to simply consider I(s, p), defined by replacing k in (5.1) with the optimal effort policy
given (s, p) (forgetting for a moment that this might not be unique). This way of proceeding, though
quite natural, is not very easy to pursue as it would involve some form of optimization over a function
space to recover p.
Since the state knows the optimal agent’s reaction given his choices, a more efficient way to attack
the problem is to directly assume that he is able to choose the couple (s, k), provided he then adjusts
the final fee structure accordingly. Quite intuitively, however, with no other constraints the problem
will easily be ill-posed: in fact, if the state can arbitrarily increase the final fees then his maximal
expected profit will diverge to infinity (and the agent’s one to minus infinity). To avoid this problem,
in the classical literature on private contracts (see [6], [11], [13]) the principal also has to guarantee to
the agent a certain initial utility, that has to be coherent with the other opportunities available on the
market. We are not in such a situation since the agent is now typically forced to enter the contract,
however we still assume that the state chooses to provide the agent with a certain initial utility R
(which can be a function of initial emissions). The assumption is quite reasonable considering that
the aim of the state is not to ruin the firm but rather to push it to act in some socially convenient
way.
Recall that the agent’s utility given (s, k, p) follows the BSDE (where we add the superscript “A” for
“Agent”) {

dY At = [−ZAt l(kt)/σ − u(st − c(kt))]dt+ ZAt dW
0
t

Y AT = −p(XT )
(5.2)

If, however, the principal chooses the initial agent’s utility, the terminal condition above is replaced by
the initial condition Y A0 = R, thus the backward SDE (5.2) becomes a forward SDE for the principal
and the terminal value Y AT =: −CT will now be an output of the initial choice of (s, k), once ZA is
fixed. Clearly CT will not in general be of the form p(XT ) (see Example 5.1), but we will still write
(s, CT , k) with a slight abuse of notation to refer to a policy with CT as final penalty.
Now remark that we must also make sure that the resulting triplet (s, CT , k) is implementable: in
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other words, when the agent faces the incentive structure (s, CT ) he must actually optimally choose
k. By Proposition 2.2, this can be achieved by setting ZAt = g(st, kt) in (5.2), which then becomes

Y At = R−
∫ t

0

[u(sr − c(kr)) + g(kr, sr)l(kr)/σ]dr +

∫ t

0

g(kr, sr)dW
0
r (5.3)

We define C
(s,k)
T := −Y AT , where Y A follows (5.3) with (s, k). The next result is now straightforward.

Lemma 5.1 The triplet (s, C
(s,k)
T , k) is the unique implementable policy for any strongly admissible

couple (s, k).

Proof. Since (s, k) is strongly admissible, it follows that g(st, kt) stays bounded and consequently

C
(s,k)
T is also admissible (it is in L2+α(Ω) for any α > 0). Now remark that, even if Proposition 2.2

is stated for final penalties of the form p(XT ), it still holds for a general claim ξ ∈ L2+α(Ω,FT ).
Theorem 2.1 then gives uniqueness. �

Example 5.1 Suppose the state aims at inducing a constant level of effort kt = k̄ over time. Assume
continuous time incentives are kept constant at some st = s̄ such that k̄ < c−1(s̄) (strong admissibility).
Denote ḡ = g(s̄, k̄), ū = u(s̄ − c(k̄)) and l̄ = l(k̄). The final penalty that has to be proposed in this
case is then

C
(s,k)
T = −R+ [ū+ ḡl̄/σ]T + |ḡ|W 0

T .

Since XT = x exp{σW 0
T − σ2T/2} we can write

C
(s,k)
T = −R+

[
ū+ ḡ

l̄ + σ2/2

σ

]
T +

|ḡ|
σ

log
XT

x
.

We see that, even in this simple example, the final penalty is not of the form p(XT ), since the initial
value x of the emissions process appears in the formula. Indeed this kind of final fee penalizes the
proportional increase in the emissions’ level from the beginning of the period. Remark also that if the

proportional reduction is sufficiently large then C
(s,k)
T can become negative and therefore represents a

reward more than a fee.
Conversely, once continuous time incentives are constant and fixed at s̄, any final penalty of the form
K + BW 0

T for some K ∈ R and B ∈ R+ induces a constant optimal effort, which can be recovered
by solving for k̄ the equation |g(s̄, k̄)| = B. The corresponding agent’s initial utility is then given by

R =
[
ū+ ḡ l̄+σ

2/2
σ

]
T −K.

We then naturally redefine the expected profit of the principal as

J(s, k) = E

[
ΓkT p1(C

(s,k)
T )− ΓkT p2(XT )−

∫ T

0

Γkru1(sr)dr

]
. (5.4)

The principal’s optimization problem is

vP := sup
(s,k)

J(s, k), (5.5)

where the sup is taken over all strongly admissible policies. In order to solve it, we now need one
additional state equation, so that our state system becomes{

Γkt = 1 +
∫ t

0
Γkr l(kr)/σdW

0
r

Y At = R−
∫ t

0
[u(sr − c(kr)) + g(kr, sr)l(kr)/σ]dr +

∫ t
0
g(kr, sr)dW

0
r .

We will apply again the SMP (Theorem 3.2 in [12]). Define the two adjoint processes
dY Pt = [−l(kt)/σZPt + u1(st)]dt+ ZPt dW

0
t

dY 1
t = Z1

t dW
0
t

Y PT = p1(−Y AT )− p2(XT )

Y 1
T = −ΓkT p

′
1(−Y AT )

(5.6)
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and the Hamiltonian

H̃(Γk, ZP , Y 1, Z1, s, k) = −Y 1[u(s− c(k))+g(k, s)l(k)/σ]+ZPΓkl(k)/σ+Z1g(k, s)−Γku1(s). (5.7)

The next result gives necessary conditions for optimality.

Proposition 5.1 Suppose the strongly admissible contract (s∗, k∗) is optimal for the principal’s prob-
lem. Then there exist two pairs of processes given by (5.6) such that (dropping *-superscripts for
clearness)

−Y 1
t [u′(st − c(kt)) + gs(kt, st)l(kt)/σ] + Z1

t gs(kt, st)− Γkt u
′
1(st) = 0 on {m < st < M}

−Y 1
t [u′(st − c(kt)) + gs(kt, st)l(kt)/σ] + Z1

t gs(kt, st)− Γku′1(st) ≥ 0 on {st = M}
−Y 1

t [u′(st − c(kt)) + gs(kt, st)l(kt)/σ] + Z1
t gs(kt, st)− Γku′1(st) ≤ 0 on {st = m}

−Y 1
t gk(kt, st)l(kt)/σ + ZPt Γkt l

′(kt)/σ + Z1
t gk(kt, st) = 0 on {kt > 0}

−Y 1
t gk(kt, st)l(kt)/σ + ZPt Γkt l

′(kt)/σ + Z1
t gk(kt, st) ≤ 0 on {kt = 0}

(5.8)

Proof. Similar to Proposition 2.1. Here we have the additional control s, which by admissibility (see
Definition 2.1) takes its values in [m,M ]. �

Sufficient conditions are much harder to derive in this case, with respect to the agent’s problem.
Indeed, a long but straightforward calculation gives, for any admissible control (s, k), that

J(s, k)− J(s∗, k∗) = Y P0 − Y P
∗

0 = Ek
∗
[Y P0 − Y P

∗

0 ] = E[Γk
∗

T (Y P0 − Y P
∗

0 )]

= E

[∫ T

0

[H̃(Θ∗r , Z
P
r , sr, kr)− H̃(Θ∗r , Z

P∗
r , s∗r , k

∗
r )− H̃ZP (Θ∗r , Z

P∗
r , s∗r , k

∗
r )(ZP − ZP∗)]dr

]

where we call Θ∗r := (Γk
∗

r , Y
1∗
r , Z1∗

r ). In order to conclude that J(s, k)−J(s∗, k∗) ≤ 0 we need to show
that H̃ is jointly concave in (ZP , s, k), but this is not true because of the term ZPΓkl(k)/σ. We will
be able to give some sufficient conditions in the particular case studied the next section.

5.1 The case p1(x) = x

Let p1(x) = x, i.e. the final agent’s disutility linked to the payment of the fee corresponds to a
principal’s utility of the same amount. Then Y 1

t = −Γkt and hence Z1
t = −Γkt l(kt)/σ. The necessary

conditions now simply become

u′(st − c(kt))− u′1(st) = 0 on {m < st < M}
u′(st − c(kt))− u′1(st) ≥ 0 on {st = M}
u′(st − c(kt))− u′1(st) ≤ 0 on {st = m}
l′(kt)Z

P
t = 0 on {kt > 0}

l′(kt)Z
P
t ≤ 0 on {kt = 0}

(5.9)

The first condition has a clear economic meaning: the principal will choose continuous-time incentives
st in such a way that, at any time, the marginal cost u′1(st) of an additional quantity is equal to the
marginal benefit u′(st − c(kt))‖.
Finding a candidate solution to (5.9) might not be trivial. Here we suggest a possible way to pro-
ceed, by working under the following assumption (which includes the definition of the two additional
functions I and L).

‖The quantity u′(st−c(kt)), by (5.3), can be seen as the average increase in the agent’s final fee following an increase
in st (recall that an increase in continuous time incentives in this context reduces the average final fee, as the initial
agent’s utility is fixed). Since p1(x) = x, the same quantity u′(st − c(kt)) is also interpreted as a marginal benefit to
the principal.
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Assumption 5.1 Suppose that

(i) We are able to invert uniquely the first three conditions in (5.9) by constructing a continuous
and a.e. differentiable function I such that s = I(k) verifies them.

(ii) We can uniquely define a continuous and a.e. differentiable function L(z) that solves (in k) the
implicit equation g(I(k), k) = z for all z ≤ 0. We set L(z) = 0 if z > 0 (as we did with the
function F in the preceding sections).

Also suppose that kt > 0 a.s. for all t ∈ [0, T ] at the optimum. Then the agent’s optimality conditions
(2.6) now give that ZAt = g(st, kt) = g(I(kt), kt), hence kt = L(ZAt ). Also (5.9) implies that at the
optimum ZPt = 0, therefore

Y P0 = C
(s,k)
T − p2(XT )−

∫ T

0

u1(sr)dr,

so that C
(s,k)
T = p2(XT )+

∫ T
0
u1(sr)dr+c for some constant c ∈ R. This allows to identify the optimal

terminal condition to the agent’s problem. Now plugging this into the agent’s BSDE we get{
dY At = [−ZAt l(L(ZAt ))/σ − u(I(L(ZAt ))− c(L(ZAt )))]dt+ ZAt dW

0
t

Y AT = −p2(XT )−
∫ T

0
u1(I(L(ZAt )))dt− c

(5.10)

where the parameter c is there to ensure that Y A0 = R. We then have the following corollary to the
necessary conditions.

Corollary 5.1 Suppose the strongly admissible contract (s∗, k∗) is optimal for the principal’s prob-
lem (5.5) with p1(x) = x and verifies k∗t > 0 a.s. for all t ∈ [0, T ]. Then, under Assumption 5.1, there
exists a solution (Y A, ZA) to (5.10) and k∗t = L(ZAt ), s∗t = I(k∗t ) = I(L(ZAt )).

Conversely, if a solution to (5.10) exists, then it will be a candidate for the optimal solution. In order
to derive some sufficient conditions, we introduce the modified Hamiltonian

HM (s, k, z) := −u1(s) + u(s− c(k)) + zl(k)/σ.

Proposition 5.2 Suppose Assumption 5.1 holds and that (5.10) admits a solution (Y A∗, ZA∗). De-
note k∗t = L(ZA∗t ) and s∗t = I(k∗t ). Then (s∗, k∗) is optimal for the principal’s problem (5.5) with
p1(x) = x.

Proof. From C
(s∗,k∗)
T = −Y A∗T we get{

dY P∗t = [−l(k∗t )/σZP∗t + u1(s∗t )]dt+ ZP∗t dW 0
t

Y P∗T = C
(s∗,k∗)
T − p2(XT ) =

∫ T
0
u1(s∗t )dt+ c,

therefore ZP∗t = 0 a.s. for all t ∈ [0, T ]. Hence we have for any strongly admissible couple (s, k)

J(s, k)− J(s∗, k∗) =Ek

[
p1(C

(s,k)
T )− p2(XT )−

∫ T

0

u1(sr)dr

]
− Ek

[
Y P∗0

]
=Ek

[
C

(s,k)
T − C(s∗,k∗)

T −
∫ T

0

[u1(sr)− u1(s∗r)]dr

]

=Ek

[
−
∫ T

0

[u1(sr)− u1(s∗r)]dr

]

+ Ek

[∫ T

0

{[u(sr − c(kr))− u(s∗r − c(k∗r ))]dr + g(k∗r , s
∗
r)[l(kr)− l(k∗r )]/σ}dr

]

=Ek

[∫ T

0

[HM (sr, kr, g(s∗t , k
∗
t ))−HM (s∗r , k

∗
r , g(s∗t , k

∗
t ))]dr

]
≤ 0
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The last line follows from the fact that by definition (s∗t , k
∗
t ) is the stationary point ofHM (·, ·, g(s∗t , k

∗
t )).

Indeed, the FOC in s gives that s = I(k), then substituting in HM (·, ·, g(s∗t , k
∗
t )) gives

HM (I(k), k, g(s∗t , k
∗
t )) = −u1(I(k)) + u(I(k)− c(k)) + g(I(k∗t ), k∗t )l(k)/σ.

Differentiating in k we obtain

HM
k (I(k), k, g(s∗t , k

∗
t )) = I ′(k)[u′(I(k)− c(k))− u′1(I(k))]− u′(I(k)− c(k))c′(k) + g(I(k∗t ), k∗t )l′(k)/σ

= −u′(I(k)− c(k))c′(k) + g(I(k∗t ), k∗t )l′(k)/σ

by the FOC in s (remark that I ′(k) = 0 iff s = I(k) = m or s = I(k) = M since u is strictly
increasing, hence the first term in the expression disappears). Equating to zero we obtain g(I(k), k) =
g(I(k∗t ), k∗t ), implying k = k∗t by Assumption 5.1 (ii). We now want to prove that this unique stationary
point is a global maximum. It suffices to notice that, since g(s∗t , k

∗
t ) ≤ 0, HM

k (I(0), 0, g(s∗t , k
∗
t )) =

g(s∗t , k
∗
t )l′(k)/σ ≥ 0 and HM

k (I(k), k, g(s∗t , k
∗
t ))→ −∞ when k → c−1(M), which implies the claim.

�

Remark that we did not need joint concavity of HM (·, ·, g(s∗t , k
∗
t )) with respect to (s, k), as is quite

common for this kind of results (see [6]). This would have required verifying that the matrix[
u′′(s− c(k))− u′′1(s) −u′′(s− c(k))c′(k)
−u′′(s− c(k))c′(k) u′′(s− c(k))c′(k)2 − u′(s− c(k))c′′(k) + g(I(k∗t ), k∗t )l′′(k)

]
is negative semi-definite, which can be hard to do in practice and might not be true in general.

5.1.1 A special case

Here we consider the power utility function u(x) = xγ/γ and we take u1(x) = 2u(x) (see Remark 5.2

below). Setting Km = c−1(m(1 − 2
1

γ−1 )) now the function I defined in Assumption 5.1 (i) takes the
form

I(k) =


c(k)

1−2
1

γ−1
if Km ≤ k ≤ KM

m if 0 ≤ k ≤ Km

M if k ≥ KM .

In order to apply Proposition 5.2 we still need to verify that point (ii) in Assumption 5.1 holds, that is

we need to show that the function g̃(k) := σ u
′(I(k)−c(k))c′(k)

l′(k) is strictly decreasing (as clearly g̃(0) = 0

and g̃(k)→ −∞ as k → c−1(M)). Computing its derivative gives

g̃′(k) := σ
[u′′(I(k)− c(k))(I ′(k)− c′(k))c′(k) + u′(I(k)− c(k))c′′(k)]l′(k)− u′(I(k)− c(k))c′(k)l′′(k)

l′(k)2
,

hence a sufficient condition (remarking that the last term in the espression above is strictly positive
except at k = 0) is

u′′(I(k)− c(k))(I ′(k)− c′(k))c′(k) + u′(I(k)− c(k))c′′(k) ≥ 0 (5.11)

a.e. on Km ≤ k ≤ KM , which in our power utility case is equivalent to

(γ − 1)c′(k)2 + c(k)c′′(k) ≥ 0.

With a quadratic cost function this is verified for 1/2 ≤ γ < 1.

Defining Ỹ At = Y At +
∫ t

0
2u(I(L(ZAr )))dr then (5.10) becomes{

−dỸ At = f̃(ZAt )dt− ZAt dW 0
t

Ỹ AT = −p2(XT )− c
(5.12)
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with f̃(z) = zl(L(z))/σ+u(I(L(z))− c(L(z)))− 2u(I(L(z))). Using the definitions of I and L we can
compute

f̃ ′(z) =l(L(z))/σ + zl′(L(z))L′(z)/σ

+ u′(I(L(z))− c(L(z)))[I ′(L(z))− c′(L(z))]L′(z)− 2u′(I(L(z)))I ′(L(z))L′(z)

=l(L(z))/σ + [zl′(L(z))/σ − u′(I(L(z))− c(L(z)))c′(L(z))]L′(z)

+ [u′(I(L(z))− c(L(z)))− 2u′(I(L(z)))]I ′(L(z))L′(z)

=l(L(z))/σ.

Remark that, even if I and L are not differentiable at two points the previous equality still holds, by
considering I ′ and L′ as a left/right derivatives in the first place.
As in the proof of Proposition 3.1 we can show that, under Assumption 3.1 for p2, ZA follows the
BSDE {

dZAt = − l(L(ZAt ))
σ Ntdt+NtdW

0
t

ZAT = −σXT p
′
2(XT ).

(5.13)

In this way the same numerical method proposed in Section 4 can be applied to (5.13) with minor
modifications to recover the optimal effort kt = L(ZAt ) and the optimal incentives st = I(kt).

Example 5.2 An example is shown in Figure 4, where we used again the functions l(k) = 1−k
1+k ,

c(k) = k2/2 and u(x) = 2
√
x. We chose (a mollified version of) the capped proportional penalty

function p2(x) = (x − 4)+ − (x − 8)+ and the minimal (maximal) incentive value is set to m = 2
(M = 10). Assumption 5.1 holds in this case by the previous discussion, since γ = 1/2.
The shape of the optimal effort is similar to the one we have already seen in Section 4.1. As for
the optimal incentives, they are set most of the time at their minimal level m = 2, while they are
raised towards the end of the period in order to generate a higher effort in the region where it is more
effective (i.e. for emissions values between 4 and 8). Notice that continuous-time incentives are not
necessarily a decreasing function of X: higher emissions (notably towards maturity) may induce the
principal to increase incentives, in order to generate a higher effort which will reduce the final social
cost at maturity.

Remark 5.1 Suppose the principal does not optimize over continuous-time incentives s, so that s is

just a constant. The candidate final fee is given by C
(s,k)
T = p2(XT ) + β for some constant β ∈ R and

the associated agent’s BSDE is now{
dY At = [−ZAt l(F (s, ZAt ))/σ − u(s− c((F (st, Z

A
t )))]dt+ ZAt dW

0
t

Y AT = −p2(XT )− β
(5.14)

which is equivalent to the agent’s formulation with final fee p2.

Remark 5.2 The choice of u1(x) = 2u(x) (which readily generalizes to u1(x) = δu(x) with δ > 1) has
been done to guarantee a nontrivial solution, in the sense that in this way different levels of incentives
will be chosen by the principal. By taking, for example, u1(x) = u(x)/2, we would obtain I(k) = M
for all k ≥ 0 (recall also that c(0) = 0 in our example) and the problem would be equivalent to the
one where incentives are fixed (see the previous Remark).

6 Conclusions

In this paper we studied a principal-agent problem in the context of emissions-reducing incentive
policies. We looked at the problem from the two points of view of the firm (agent) and the state
(principal), by deriving optimality conditions, BSDE/PDE representations and sensitivity results. A
discretization scheme along with numerical experiments in some particular cases are also provided. It
would be interesting to extend our results by allowing for switching costs for changing effort regimes
or by including the possibility to trade emissions contracts on a financial market. This is left for future
research.
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Figure 4: Optimal effort and optimal incentives dynamics with p2(x) = (x − 4)+ − (x − 8)+, m = 2,
M = 10.
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7 Appendix

Lemma 7.1 The measure changes Γk and (Γk)−1 are bounded in Lq for any q ≥ 0, uniformly on
[0, T ].

Proof. Denote Qt = (Γkt )q for some q ∈ R. We have in general dQt = Qt
[
Kl(kt)dW

0
t + Cl2(kt)dt

]
,

where K,C are constants depending on q. We can choose an increasing sequence Tn of stopping times
such that Tn →∞ and, since l is bounded, we have

E[Qt∧Tn ] = 1 + CE

[∫ t∧Tn

0

Qrl
2(kr)dr

]
≤ 1 + CE

[∫ t

0

Qr∧Tndr

]
,

Therefore by Gronwall’s lemma
E[Qt∧Tn ] ≤ eC ,

and hence E[Qt] ≤ eC by Fatou’s lemma. Remark that C only depends on q. �

Lemma 7.2 Let k be an admissible effort policy. Then system (2.8) associated to k admits a unique
Ft-measurable solution (Y,Z) which satisfies

E

[
sup

0≤t≤T
|Yt|2 +

∫ T

0

|Zt|2dt

]
<∞

and also

Ek̄

[
sup

0≤t≤T
|Yt|2 +

∫ T

0

|Zt|2dt

]
<∞.

for any admissible k̄ (possibly different from k).

Proof. For any admissible k define the system
dXt = σXtdW

0
t

dỸt = −Γkt u(st − c(kt))dt+ Z̃tdW
0
t

X0 = x, ỸT = ΓkT ξ

(7.1)

with ξ = −p(XT ). By Hölder’s inequality (with q = 2+α
2 ), Lemma 7.1 and admissibility of k we obtain

E

[∫ T

0

(Γkt )2u(st − c(kt))2dt

]
≤ E

[∫ T

0

|Γkt |
2(2+α)
α dt

] α
2+α

E

[∫ T

0

|u(st − c(kt))|2+αdt

] 2
2+α

<∞

In a similar way we have that ΓkT ξ ∈ L2 by Lemma 7.1.
By standard results on BSDEs (see [10], Theorem 6.2.1), or simply by the MRT, there exists a unique
solution to (7.1) which satisfies

E

[
sup

0≤t≤T
|Ỹt|2 +

∫ T

0

|Z̃t|2dt

]
<∞.
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Now define Yt = Ỹt[Γ
k
t ]−1 and Zt = [Z̃t − l(kt)/σỸt][Γkt ]−1. We have

d

(
1

Γkt

)
= − 1

Γkt

l(kt)

σ
dW k

t ,

recall that dΓkt = Γkt
l(kt)
σ dW 0

t , and so

dYt =d

(
Ỹt
Γkt

)
=

(
1

Γkt

)
dỸt + Ỹtd

(
1

Γkt

)
− Z̃t

Γkt

l(kt)

σ
dt = −u(st − c(kt))dt

+
Z̃t
Γkt
dW k

t +
Z̃t
Γkt

l(kt)

σ
dt− Ỹt

Γkt

l(kt)

σ
dW k

t −
Z̃t
Γkt

l(kt)

σ
dt

=− u(st − c(kt))dt+ ZtdW
k
t

hence (Y, Z) solve (2.8) with YT = ξ. By using (7.1) we get

Yt = Ek

[
ξ +

∫ T

t

u(sr − c(kr))dr | Ft

]
Now define the martingale

Ŷt = Yt +

∫ t

0

u(sr − c(kr))dr = Ek

[
ξ +

∫ T

0

u(sr − c(kr))dr | Ft

]
.

We have by Doob’s inequality

Ek

[(
sup

0≤t≤T
|Ŷr|
)2+α

]
≤ CEk

[
ξ2+α

]
+ CEk

[∫ T

0

u(sr − c(kr))2+αdr

]
<∞

for α > 0 sufficiently small, by admissibility of k. Since dŶt = ZtdW
k
t we can also conclude (by BDG)

that

Ek

(∫ T

0

Z2
rdr

) 2+α
2

 ≤ CEk [( sup
0≤t≤T

|Ŷr|
)2+α

]
<∞

By taking another admissible k̄ we get

Ek̄

(∫ T

0

Z2
rdr

)2
 = Ek

Γk̄T
ΓkT

(∫ T

0

Z2
rdr

)2
 <∞

by using Hölder’s inequality and Lemma 7.1 in a similar way as above. We also have by Doob’s
inequality

Ek

[(
sup

0≤t≤T
|Ŷr|2

)β]
≤ CEk

[
ξ2β
]

+ CEk

[∫ T

0

u(sr − c(kr))2βdr

]
<∞

for β > 1 sufficiently small, hence similarly as above

Ek̄
[

sup
0≤t≤T

|Yr|2
]
<∞.

�

Proof of Lemma 2.1. Recall that g is naturally defined for m < s ≤ M and 0 ≤ k < c−1(s).
Assumptions 2.1 and 2.2 ensure that

gk(s, k) = σ
l′(k)[−u′′(s− c(k))c′(k)2 + u′(s− c(k))c′′(k)]− l′′(k)[u′(s− c(k))c′(k)]

l′(k)2
≤ 0,
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where gk is the first derivative of g with respect to the variable k. Moreover, g(s, 0) = 0 and
limk→c−1(s) g(s, k) = −∞, which implies that for any s ≥ m and z ≤ 0 the equation g(s, k) = z has a
unique solution, i.e. F (s, z). Finally we set F (s, z) = 0 when z ≥ 0. Remark that 0 ≤ F (s, z) < c−1(s),
with limz→−∞ F (s, z) = c−1(s). We have

Fz(s, z) =
l′(F )2

l′(F )[−u′′(s− c(F ))c′(F )2 + u′(s− c(F ))c′′(F )]− l′′(F )[u′(s− c(F ))c′(F )]

when z < 0, and Fz(s, z) = 0 when z > 0. When z = 0 then F has a right derivative Fz+(s, 0) = 0
and a left derivative

Fz−(s, 0) =
l′(0)2

l′(0)u′(s− c(0))c′′(0)

which does not diverge since s ≤ M and c′′(0) > 0. Hence F (s, ·) is Lipschitz and continuously
differentiable on R \ {0}.
Finally we can compute

gkk(s, k) =− 2c′(k)

(
c′′(k)

l′(k)
− c′(k)l′′(k)

l′(k)2

)
u′′(s− c(k))

+ u′(s− c(k))

[
−2c′′(k)l′′(k)

l′(k)2
+
c(3)(k)

l′(k)
+ c′(k)

(
2l′′(k)2

l′(k)3
− l(3)(k)

l′(k)2

)]
+
c′(k)

(
−c′′(k)u′′(s− c(k)) + c′(k)2u(3)(s− c(k))

)
l′(k)

and the last claim follows by noting that

Fzz(s, z) =
−gkk(s, F (s, z))Fz(s, z)

[gk(s, F (s, z))]2
= − gkk(s, F (s, z))

[gk(s, F (s, z))]3
.

�
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