The financialization of the term structure of risk premia in commodity markets

Edouard Jaeck1*

¹DRM-Finance, Université Paris-Dauphine

IdR FIME, February 3rd, 2017

DAUPHINE UNIVERSITÉ PARIS

Table of contents

Introduction

The model

Economic setting
Optimal positions
Pre- and post-financialization equilibria

Analysis of a representative market

Risk premia contract by contract The term structure of risk premia Liquidity provision by the agents

Heterogeneity of commodity markets and the financialization

Non-integrated markets Markets dominated by long hedgers

Conclusion

Overview of the paper

The financialization:

- ▶ An in-depth modification of commodity derivative markets after 2000
- ► Mainly in the trading participation: trading floor with specialists ⇒ electronic trading with new investors and algo traders
- Often assimilated to a modification in the behavior of commodity prices

Overview of the paper

The financialization:

- ▶ An in-depth modification of commodity derivative markets after 2000
- ▶ Mainly in the trading participation: trading floor with specialists ⇒ electronic trading with new investors and algo traders
- Often assimilated to a modification in the behavior of commodity prices

Want to shed light on the financialization of commodity markets:

- Via the study of the trading behavior of cross-asset investors
- ▶ To assess its impact on the functioning of commodity markets
- ► Taking into account the heterogeneity of commodity markets and the maturity component

Overview of the paper

The financialization:

- ▶ An in-depth modification of commodity derivative markets after 2000
- ► Mainly in the trading participation: trading floor with specialists ⇒ electronic trading with new investors and algo traders
- ► Often assimilated to a modification in the behavior of commodity prices

Want to shed light on the financialization of commodity markets:

- Via the study of the trading behavior of cross-asset investors
- ▶ To assess its impact on the functioning of commodity markets
- ► Taking into account the heterogeneity of commodity markets and the maturity component

How:

- Equilibrium model for commodity futures markets
- ► Financialization = entry of cross-asset investors into a commodity market

Financialization: facts on the participation in commodity markets

More trading takes place in commodity markets: open interest has boomed

Source: Cheng and Xiong [2014]

Financialization: facts on the participation in commodity markets

Financial traders are more important and want to buy

Why this modification in the trading participation of commodity markets?

- 1. Investors want to diversify their portfolios
 - commodity markets are segmented from other financial markets
 - low correlation between commodity markets and equity/bond markets

Why this modification in the trading participation of commodity markets?

- 1. Investors want to diversify their portfolios
 - commodity markets are segmented from other financial markets
 - ▶ low correlation between commodity markets and equity/bond markets

 \Rightarrow why now?

Why this modification in the trading participation of commodity markets?

- 1. Investors want to diversify their portfolios
 - commodity markets are segmented from other financial markets
 - ▶ low correlation between commodity markets and equity/bond markets
 - \Rightarrow why now?
- 2. Development of new investment vehicles for index investing
 - ► ETFs, CITs...
 - trading as any other financial product (daily liquidity, no margin call...)
 - very low costs (compared to hedge funds)

Financialization: facts on the behavior of commodity prices

Commodity markets experienced boom/bust cycles

Source: Cheng and Xiong [2014]

Correlation between commodity and equity markets increases

Accident or causality?

Does the modification of the trading participation has lead to the modification in the behavior of commodity prices?

- Michael Master (2008): direct link between investment flows from CITs and boom/bust cycle
- ▶ The initial academic research (Brunetti and Buyuksahin [2009], Buyuksahin and Harris [2011], Singleton [2013]...): mixed results, because of econometric issues

Accident or causality?

Does the modification of the trading participation has lead to the modification in the behavior of commodity prices?

- Michael Master (2008): direct link between investment flows from CITs and boom/bust cycle
- ▶ The initial academic research (Brunetti and Buyuksahin [2009], Buyuksahin and Harris [2011], Singleton [2013]...): mixed results, because of econometric issues
- \Rightarrow no clear response, empirical literature try to assess the effects on the fundamental economic functions of commodity markets!

Accident or causality?

Does the modification of the trading participation has lead to the modification in the behavior of commodity prices?

- Michael Master (2008): direct link between investment flows from CITs and boom/bust cycle
- ▶ The initial academic research (Brunetti and Buyuksahin [2009], Buyuksahin and Harris [2011], Singleton [2013]...): mixed results, because of econometric issues
- \Rightarrow no clear response, empirical literature try to assess the effects on the fundamental economic functions of commodity markets!

Effects of the financialization on the risk sharing function:

- ► Lower risk premia: Hamilton and Wu [2014] and Baker [2016] for Crude Oil, Brunetti and Reiffen [2014] for agricultural markets
- ▶ Higher integration of commodity markets between themselves (Tang and Xiong [2012]) and with other asset classes (Silvennoinen and Thorp [2013], Buyuksahin and Robe [2014] and Boons et al. [2014])

My paper in this context:

Goal: understand the consequences of the financialization for the functioning of commodity markets

- ▶ focus on the risk sharing function of commodity markets: risk premia ⇒ Commodity markets are characterized by inefficient risk sharing (cf Keynes [1930])
- ▶ emphasize the maturity component of commodity markets: term structure ⇒ often ignored in the literature on the behavior of commodity prices (Anderson and Danthine [1983], Hirshleifer [1988], Acharya et al. [2013], Ekeland et al. [2016]) or the literature on the financialization

My paper in this context:

Goal: understand the consequences of the financialization for the functioning of commodity markets

- ▶ focus on the risk sharing function of commodity markets: risk premia \Rightarrow Commodity markets are characterized by inefficient risk sharing (cf Keynes [1930])
- emphasize the maturity component of commodity markets: term structure \Rightarrow often ignored in the literature on the behavior of commodity prices (Anderson and Danthine [1983], Hirshleifer [1988], Acharya et al. [2013], Ekeland et al. [2016]) or the literature on the financialization

Methodology: three-date equilibrium model of commodity markets

- limited participation
- ▶ Mean-Variance Framework with heterogeneous agents
- Commodity and stock markets
- Existence of a term structure
- ▶ 3-step reasoning: one pre- and two post-financialization economies.
- ► Solved analytically but with visual representations

Take away

Pre-financialization:

- Commodity markets are segmented from the stock market
- ▶ Risk premia if hedging pressure
- Speculators link the futures contracts for different maturities
- Speculators both provide and consume liquidity

Take away

Pre-financialization:

- Commodity markets are segmented from the stock market
- ▶ Risk premia if hedging pressure
- Speculators link the futures contracts for different maturities
- Speculators both provide and consume liquidity

Post-financialization:

- Commodity markets are less segmented form the stock market
- Investment pressure creates risk premia
- Financialization always affects all the term structure (even with constrained investors)
- Investors both provide and consume liquidity

Take away

Pre-financialization:

- Commodity markets are segmented from the stock market
- ▶ Risk premia if hedging pressure
- Speculators link the futures contracts for different maturities
- Speculators both provide and consume liquidity

Post-financialization:

- Commodity markets are less segmented form the stock market
- Investment pressure creates risk premia
- Financialization always affects all the term structure (even with constrained investors)
- Investors both provide and consume liquidity

Generally: the effects of the financialization are market-specific

Table of contents

Introduction

The model

Economic setting
Optimal positions
Pre- and post-financialization equilibria

Analysis of a representative market

Risk premia contract by contract The term structure of risk premia Liquidity provision by the agents

Heterogeneity of commodity markets and the financialization

Non-integrated markets
Markets dominated by long hedgers

Conclusion

The time, the assets and the markets

Three dates: t = 0, 1, 2; agents make decisions during the two first

Three assets:

- a risk-free asset with a null risk-free rate
- ▶ a stock market index, traded at $t = 0, 1 \Rightarrow R_{r_t}$, μ_{r_t} , and $\sigma_{r,t}^2$
- a term structure of futures contracts
 - at t = 0 two contracts with maturities t = 1 (front-month) and t = 2 (deferred)
 - ▶ at t = 1 one contract with maturity t = 2 (front-month)
 - $ightharpoonup R_{F_{t,T}}$, $\mu_{F_{t,T}}$, and $\sigma_{t,T}^2$

N_p producers with a preferred habitat:

- two types of producers (identical in terms of number and risk aversion)
 - preferred habitat theory from Modigliani and Sutch [1966] for interest rates and Lautier [2005] for commodities
 - ightharpoonup short-term: between t=0 and t=1 with random production at $t=1\Rightarrow$ trade only the contract maturing at t=1
 - ▶ long-term: between t = 0 and t = 2 with random production at t = 1 ⇒ trade only the contract maturing at t = 2
- \blacktriangleright positions $f^{p}_{t+1,T}$ in the futures contract with maturity T to hold until t+1

N_p producers with a preferred habitat:

- two types of producers (identical in terms of number and risk aversion)
 - preferred habitat theory from Modigliani and Sutch [1966] for interest rates and Lautier [2005] for commodities
 - ightharpoonup short-term: between t=0 and t=1 with random production at $t=1\Rightarrow$ trade only the contract maturing at t=1
 - ▶ long-term: between t = 0 and t = 2 with random production at t = 1 ⇒ trade only the contract maturing at t = 2
- **>** positions $f_{t+1,T}^{p}$ in the futures contract with maturity T to hold until t+1

N_s specialized speculators:

- two successive generations of short-term speculators
- no physical exposure to the commodity
- ightharpoonup positions $f_{t+1,T}^s$ in the futures contract with maturity T to hold until

$$t+1$$

N_{in} cross-asset investors:

- two successive generations of short-term cross-asset investors
- hold a commodity risk (inflation risk)
- \blacktriangleright positions $f^w_{t+1,\,T}$ in the futures contract with maturity T to hold until t+1
- can have different investment strategies
 - constrained: trade only the front-month contract; proxy for CITs
 - unconstrained: trade the entire term structure; proxy for hedge funds

N_{in} cross-asset investors:

- two successive generations of short-term cross-asset investors
- hold a commodity risk (inflation risk)
- $lackbox{ positions } f^w_{t+1,\mathcal{T}}$ in the futures contract with maturity \mathcal{T} to hold until t+1
- can have different investment strategies
 - constrained: trade only the front-month contract; proxy for CITs
 - unconstrained: trade the entire term structure; proxy for hedge funds

Why hedgers as producers? Empirically aggregated hedgers short the commodity (normal backwardation theory of Keynes [1930])

Why different time-horizons? Kang et al. [2014] show that speculators trade more impatiently

The randomness and the physical market

Random productions:

- $ightharpoonup ilde{q}_t$ at t=1,2; independent and normally distributed
- no physical decisions (production or storage)

The randomness and the physical market

Random productions:

- $ightharpoonup ilde{q}_t$ at t=1,2; independent and normally distributed
- no physical decisions (production or storage)

The physical market:

- ▶ Aggregated production at time t: $\tilde{Q}_t = N_p * \tilde{q}_t$
- ▶ Linear demand Q_t^D from consumers
- lacktriangle Spot price S_t is such that $ilde{Q}_t = Q_t^D$
- $ightharpoonup R_{s,t}$ and $\sigma_{s,t}^2$

Each agent *i* solves:

$$\max_{\substack{f_{t+1,T}^i\\ t \neq 1, T}} E_t[\pi_{t+1}] - \frac{\gamma_i}{2} Var_t[\pi_{t+1}]$$

Each agent *i* solves:

$$\max_{\substack{f_{t+1,T}^i}} \ E_t[\pi_{t+1}] - \frac{\gamma_i}{2} \textit{Var}_t[\pi_{t+1}]$$

Short-term specialized peculators:

▶ at t = 1, second generation: $\pi_2 = R_{F_{2,2}} f_{2,2}^s \Rightarrow$

$$f_{2,2}^{s\star} = \frac{\mu_{F_{2,2}}}{\gamma_s \sigma_{2,2}^2}$$

Each agent *i* solves:

$$\max_{\substack{f_{t+1,T}^i\\ t \neq t}} E_t[\pi_{t+1}] - \frac{\gamma_i}{2} \mathit{Var}_t[\pi_{t+1}]$$

Short-term specialized peculators:

▶ at t = 1, second generation: $\pi_2 = R_{F_{2,2}} f_{2,2}^s \Rightarrow$

$$f_{2,2}^{s\star} = \frac{\mu_{F_{2,2}}}{\gamma_s \sigma_{2,2}^2}$$

▶ at t = 0, first generation: $\pi_1 = R_{F_{1,1}} f_{1,1}^s + R_{F_{1,2}} f_{1,2}^s \Rightarrow$

$$f_{1,1}^{s\star} = \frac{\mu_{F_{1,1}}\sigma_{1,2}^2 - \mu_{F_{1,2}}\sigma_{[11,12]}}{\gamma_s(\sigma_{1,1}^2\sigma_{1,2}^2 - \sigma_{[11,12]}^2)}$$
$$f_{1,2}^{s\star} = \frac{\mu_{F_{1,2}}\sigma_{1,1}^2 - \mu_{F_{1,1}}\sigma_{[11,12]}}{\gamma_s(\sigma_{1,1}^2\sigma_{1,2}^2 - \sigma_{[11,12]}^2)}$$

Producers with a preferred habitat: trade only on the futures market but hold a physical exposure

▶ Short-term producer, at t = 0: $\pi_1 = \tilde{q}_1 R_{s,1} + R_{F_{1,1}} f_{1,1}^p \Rightarrow$

$$f_{1,1}^{\rho\star} = \frac{\mu_{F_{1,1}}}{\gamma_{\rho}\sigma_{1,1}^2} - \frac{\rho_{[1,11]}}{\sigma_{1,1}^2}$$

with $\rho_{[t,t_1T_1]}$ is the covariance between the physical revenue between t-1 and t and the return $R_{F_{t_1},T_1}$.

Producers with a preferred habitat: trade only on the futures market but hold a physical exposure

▶ Short-term producer, at t = 0: $\pi_1 = \tilde{q}_1 R_{s,1} + R_{F_{1,1}} f_{1,1}^p \Rightarrow$

$$f_{1,1}^{p\star} = \frac{\mu_{F_{1,1}}}{\gamma_p \sigma_{1,1}^2} - \frac{\rho_{[1,11]}}{\sigma_{1,1}^2}$$

with $\rho_{[t,t_1,T_1]}$ is the covariance between the physical revenue between t-1 and t and the return $R_{F_{t_1},T_1}$.

▶ Long-term producer, at t=1: $\pi_2=\pi_1+\tilde{q}_2R_{s,2}+R_{F_{2,2}}f_{2,2}^p\Rightarrow$

$$f_{2,2}^{p\star} = \frac{\mu_{F_{2,2}}}{\gamma_p \sigma_{2,2}^2} - \frac{\rho_{[2,22]}}{\sigma_{2,2}^2}$$

Producers with a preferred habitat: trade only on the futures market but hold a physical exposure

▶ Short-term producer, at t=0: $\pi_1=\tilde{q}_1R_{s,1}+R_{F_{1,1}}f_{1,1}^p\Rightarrow$

$$f_{1,1}^{p\star} = \frac{\mu_{F_{1,1}}}{\gamma_p \sigma_{1,1}^2} - \frac{\rho_{[1,11]}}{\sigma_{1,1}^2}$$

with $\rho_{[t,t_1T_1]}$ is the covariance between the physical revenue between t-1 and t and the return $R_{F_{t_1},T_1}$.

▶ Long-term producer, at t = 1: $\pi_2 = \pi_1 + \tilde{q}_2 R_{s,2} + R_{F_{2,2}} f_{2,2}^p \Rightarrow$

$$f_{2,2}^{p\star} = \frac{\mu_{F_{2,2}}}{\gamma_p \sigma_{2,2}^2} - \frac{\rho_{[2,22]}}{\sigma_{2,2}^2}$$

▶ Long-term producer, at t = 0 solves $\max_{f_{1,2}^p} E_0[\pi_2] - \frac{\gamma_p}{2} Var_0[\pi_2] \Rightarrow$

$$f_{1,2}^{\rho\star} = \frac{\mu_{F_{1,2}}}{\gamma_{\rho}\sigma_{1,2}^2} - \frac{\mu_{F_{2,2}}\sigma_{[12,22]}}{\gamma_{\rho}\sigma_{1,2}^2\sigma_{2,2}^2} + \frac{\rho_{[2,22]}\sigma_{[12,22]}}{\sigma_{1,2}^2\sigma_{2,2}^2} - \frac{\rho_{[2,12]}}{\sigma_{1,2}^2} \qquad \text{ only first step partial pa$$

Short-term cross-asset investors (constrained):

- ightharpoonup same set of investment for the two generations \Rightarrow same optimal positions
- ▶ between t-1 and t: $\pi_t = w_t R_{r_t} + \varphi_t R_{s,t} + f_{t,t}^w R_{F_{t,t}} \Rightarrow$

$$\begin{split} w_{t}^{\star} &= \frac{\mu_{r_{t}}\sigma_{t,t}^{2} - \mu_{F_{t,t}}\sigma_{[r_{t},F_{t,t}]}}{\gamma_{in}(\sigma_{t,t}^{2}\sigma_{r,t}^{2} - \sigma_{[r_{t},F_{t,t}]}^{2})} + \frac{\varphi_{t}\left\{\sigma_{[r_{t},F_{t,t}]}\sigma_{[s_{t},F_{t,t}]} - \sigma_{t,t}^{2}\sigma_{[r_{t},s_{t}]}\right\}}{(\sigma_{t,t}^{2}\sigma_{r,t}^{2} - \sigma_{[r_{t},F_{t,t}]}^{2})}, \ \forall t = 1,2 \\ f_{t,t}^{w\star} &= \frac{\mu_{F_{t,t}}\sigma_{r,t}^{2} - \mu_{r_{t}}\sigma_{[r_{t},F_{t,t}]}}{\gamma_{in}(\sigma_{t,t}^{2}\sigma_{r,t}^{2} - \sigma_{[r_{t},F_{t,t}]}^{2})} + \frac{\varphi_{t}\left\{\sigma_{[r_{t},F_{t,t}]}\sigma_{[r_{t},s_{t}]} - \sigma_{r,t}^{2}\sigma_{[s_{t},F_{t,t}]}\right\}}{(\sigma_{t,t}^{2}\sigma_{r,t}^{2} - \sigma_{[r_{t},F_{t,t}]}^{2})}, \ \forall t = 1,2 \end{split}$$

where $\sigma_{[s_t,F_{t_1,T_1}]}$ is the covariance between the return of the spot price between t-1 and t and the return $R_{F_{t_1,T_1}}$; and $\sigma_{[r_t,F_{t_1,T_1}]}$ is the covariance between the return of the stock index between t-1 and t and the return $R_{F_{t_1,T_1}}$.

For unconstrained investors: same components, but less tractable

Pre-financialization economy

Clearing of the markets:

```
t=0, maturing in 1: N_s f_{1,1}^{s\star} + N_p f_{1,1}^{p\star} = 0

t=0, maturing in 2: N_s f_{1,2}^{s\star} + N_p f_{1,2}^{p\star} = 0

t=1, maturing in 2: N_s \left( f_{2,2}^{s\star} - f_{1,2}^{s\star} \right) + N_p \left( f_{2,2}^{p\star} - f_{1,2}^{p\star} \right) = 0
```

Pre-financialization economy

Clearing of the markets:

```
t=0, maturing in 1: N_s f_{1,1}^{s\star} + N_p f_{1,1}^{p\star} = 0

t=0, maturing in 2: N_s f_{1,2}^{s\star} + N_p f_{1,2}^{p\star} = 0

t=1, maturing in 2: N_s \left( f_{2,2}^{s\star} - f_{1,2}^{s\star} \right) + N_p \left( f_{2,2}^{p\star} - f_{1,2}^{p\star} \right) = 0
```

Results:

- 1. Risk premia: only with risk-averse producers and hedging pressure (see Keynes [1930], De Roon et al. [2000], Ekeland et al. [2016])
- 2. Risk premia: \nearrow or \searrow with speculators
 - against results in a mono-commodity framework
 - diversification behavior of speculators on the term structure
- 3. Risk premium of the front-month contract maturing in t=1: affected by long term variables
 - no need for hedgers to exit their preferred habitat
 - arbitrage behavior of the speculators

Post-financialization economies: clearing

Clearing of the markets with constrained investors:

t=0, maturing in 1:
$$N_s f_{1,1}^{s\star} + N_p f_{1,1}^{p\star} + N_{in} f_{1,1}^{w\star} = 0$$

t=0, maturing in 2:
$$N_s f_{1,2}^{s\star} + N_p f_{1,2}^{p\star} = 0$$

t=1, maturing in 2:
$$N_s\left(f_{2,2}^{s\star}-f_{1,2}^{s\star}\right)+N_p\left(f_{2,2}^{p\star}-f_{1,2}^{p\star}\right)+N_{in}f_{2,2}^{w\star}=0$$

Clearing of the markets with unconstrained investors:

t=0, maturing in 1:
$$N_s f_{1.1}^{s*} + N_p f_{1.1}^{p*} + N_{in} f_{1.1}^{w*} = 0$$

t=0, maturing in 2:
$$N_s f_{1,2}^{s\star} + N_p f_{1,2}^{p\star} + N_{in} f_{1,2}^{w\star} = 0$$

t=1, maturing in 2:
$$N_s\left(f_{2,2}^{s\star}-f_{1,2}^{s\star}\right)+N_{\rho}\left(f_{2,2}^{\rho\star}-f_{1,2}^{\rho\star}\right)+N_{in}\left(f_{2,2}^{w\star}-f_{1,2}^{w\star}\right)=0$$

1. Risk premia: even without producers because of investment pressure from investors

- Risk premia: even without producers because of investment pressure from investors
- 2. Risk premia: \nearrow or \searrow with investors
 - hedging, speculative and diversification demands
 - investment pressure can compensate/reinforce hedging pressure

- Risk premia: even without producers because of investment pressure from investors
- 2. Risk premia: \nearrow or \searrow with investors
 - hedging, speculative and diversification demands
 - investment pressure can compensate/reinforce hedging pressure
- 3. Risk premia: depend on financial variables $(\mu_r, \sigma_r^2,...)$

- Risk premia: even without producers because of investment pressure from investors
- 2. Risk premia: \nearrow or \searrow with investors
 - hedging, speculative and diversification demands
 - investment pressure can compensate/reinforce hedging pressure
- 3. Risk premia: depend on financial variables $(\mu_r, \sigma_r^2,...)$
- 4. Term structure: all the maturities are impacted, even with constrained investors
 - With constrained investors: results hold for the risk premium of the deferred contract (not traded by cross-asset investors)
 - arbitrage behavior of speculators and producers
 - propagation depends on the integration of the market

Table of contents

Introduction

The model

Economic setting
Optimal positions
Pre- and post-financialization equilibria

Analysis of a representative market

Risk premia contract by contract The term structure of risk premia Liquidity provision by the agents

Heterogeneity of commodity markets and the financialization

Non-integrated markets
Markets dominated by long hedgers

Conclusion

Parameters

Remarks:

- ▶ some parameters are based on S&P 500 and WTI prices
- some assumptions are made (stationary time series)
- some parameters are arbitrary

Parameters

Remarks:

- some parameters are based on S&P 500 and WTI prices
- some assumptions are made (stationary time series)
- some parameters are arbitrary

Important choices:

- Hedgers are producers: positive covariance between the physical revenue and the futures contract
- ▶ Investors have a negative exposure to the commodity: inflation risk as in Boons et al. [2014]

Parameters

Parameters	Description	Value
$\sigma_{1,1}^2, \sigma_{2,2}^2$	Variance of the front-month futures contract	1.25
$\sigma_{1,2}^{2}$	Variance of the deferred futures contract	.98
$\sigma_{[11,12]}$	Cov between the front-month and the deferred futures con-	1.07
	tracts	
μ_{r_1}, μ_{r_2}	Expected return of the stock market index	0.08
$\sigma_{r,1}^{\mu_{r_{1}},\ \mu_{r_{2}}}, \sigma_{r,2}^{2}$	Variance of the return of the stock market index	.5
$\sigma_{[r_1,F_{1,1}]}, \sigma_{[r_2,F_{2,2}]}$	Cov between the front-month contract and the stock market	.31
$\sigma_{[r_1,F_{1,2}]}$	Cov between the deferred contract and the stock market	.29
$\sigma_{[s_1,F_{1,1}]}, \sigma_{[s_2,F_{2,2}]}$	Cov between the front-month contract and the spot market	1.26
$\sigma_{[s_1,F_{1,2}]}$	Cov between the deferred contract and the spot market	1.06
$\sigma_{[r_1,s_1]}, \sigma_{[r_2,s_2]}$	Cov between the spot and the stock markets	.3

Parameters	Description	Value
$\sigma_{[11,22]}, \sigma_{[12,22]}$	Cov between non-contemporaneous futures contracts	0
$\rho_{[1,11]}, \rho_{[2,22]}$	Cov between the physical revenue and the front-month contract	1
$ ho_{[1,12]}$	Cov between the physical revenue and the deferred contract	.7
$\rho_{[2,11]}, \rho_{[2,12]}$	Cov between the physical revenue and non-contemporaneous	0
	futures contracts	
φ_1, φ_2	Commodity risk of the investors	-2
$\gamma_i, \gamma_p, \gamma_s$	Risk aversion of the agents	- ₁ - ·
λ_s	Elasticity of the speculators	2

Risk premia as a function of the investors

The red lines are for $\lambda_p = 0$, the blue lines are for $\lambda_p = 1$, and the green lines are for $\lambda_p = 2$. The thick lines are for the pre-financialization, the dashed lines are for the financialization with constrained investors, and the dotted lines are for the financialization with unconstrained investors.

Risk premia as a function of the investors: comments

- 1. Previous analytical results:
 - pre-fi, no producers no risk premia
 - post-fi, risk premia even without producers
 - ▶ risk premia / with investment and hedging pressures

Risk premia as a function of the investors: comments

- 1. Previous analytical results:
 - pre-fi, no producers no risk premia
 - post-fi, risk premia even without producers
- 2. Investment pressure compensate the hedging pressure
 - ▶ Lower and negative risk premia: Hamilton and Wu [2014]
 - ▶ But can be negative and more important ⇔ investment pressure > hedging pressure

Risk premia as a function of the investors: comments

- 1. Previous analytical results:
 - pre-fi, no producers no risk premia
 - post-fi, risk premia even without producers
- 2. Investment pressure compensate the hedging pressure
 - ▶ Lower and negative risk premia: Hamilton and Wu [2014]
 - ▶ But can be negative and more important ⇔ investment pressure > hedging pressure
- 3. Important propagation effect, even with constrained investors (high integration)

The term structure of risk premia

The blue line is for the pre-financialization economy ($\lambda_{in}=0$), the black lines are for the post-financialization economies with $\lambda_{in}=0.5$, and the orange lines are for the post-financialization economies with $\lambda_{in}=3$. The dashed lines are for the financialization with constrained investors, and the dotted lines are for the financialization with unconstrained investors.

The term structure of risk premia: comments

Shape of the term structure of risk premia:

- Changes with the financialization
- ► Backwardation ⇒ contango
- ▶ front-month contract is the most used for trading and hedging
- no dislocation with constrained investors

The term structure of risk premia: comments

Shape of the term structure of risk premia:

- Changes with the financialization
- ► Backwardation ⇒ contango
- front-month contract is the most used for trading and hedging
- no dislocation with constrained investors

Extension to the term structure of futures prices (under some restrictive assumptions):

$$\mu_{F_{1,1}} - \mu_{F_{1,2}} = E_0[S_1] - F_{0,1} - E_0[S_2] + F_{0,2}$$

= $Basis - E_0[\Delta S] = Basis$

- ► Changes with the financialization
- ▶ Contango ⇒ backwardation

Liquidity provision by the agents: front-month and deferred contracts

The purple lines are for speculators, the black lines for producers, and the orange lines for investors. The thick lines are for the pre-financialization, the dashed lines are for the financialization with constrained investors, and the dotted lines for the financialization with unconstrained investors.

Liquidity provision by the agents: comments

Traditional view: speculators provide liquidity to hedgers \Rightarrow higher the speculation, lower the risk premium (Ekeland et al. [2016])

Liquidity provision by the agents: comments

Traditional view: speculators provide liquidity to hedgers ⇒ higher the speculation, lower the risk premium (Ekeland et al. [2016])

Seems incomplete:

- ► Speculator provides and consumes liquidity: empirical illustration by Kang et al. [2014]
- ▶ With the financialization, speculators and hedgers provide liquidity to investors: empirical illustration by Cheng and Xiong [2014]
 - speculators start to short
 - hedgers short more and more

Table of contents

Introduction

The model

Economic setting
Optimal positions
Pre- and post-financialization equilibria

Analysis of a representative market

Risk premia contract by contract The term structure of risk premia Liquidity provision by the agents

Heterogeneity of commodity markets and the financialization

Non-integrated markets Markets dominated by long hedgers

Conclusion

Heterogeneity of commodity markets and the financialization

Commodity markets are heterogeneous

- commodities have different physical characteristics (storability, storage cost, transportation cost...)
- ► markets have different structures (oligopolistic or high competition, imbalance between producers and consumers...)
- ⇒ quantitatively, the effects of the financialization vary

Heterogeneity of commodity markets and the financialization

Commodity markets are heterogeneous

- commodities have different physical characteristics (storability, storage cost, transportation cost...)
- ► markets have different structures (oligopolistic or high competition, imbalance between producers and consumers...)
- ⇒ quantitatively, the effects of the financialization vary

Two examples:

- ▶ a non-integrated market: electricity
- ▶ a market dominated by long hedgers

Non-integrated markets

Context:

- market with a low temporal integration (low covariance)
- ▶ low temporal integration because of limits to arbitrage (non storability, high cost of storage...)
- electricity can be an example

Non-integrated markets

Context:

- market with a low temporal integration (low covariance)
- ▶ low temporal integration because of limits to arbitrage (non storability, high cost of storage...)
- electricity can be an example

What do I do: decrease the correlation between contemporaneous futures prices

Non-integrated markets: risk premia

The red lines are for $\lambda_p=0$, the blue lines are for $\lambda_p=1$, and the green lines are for $\lambda_p=2$. The thick lines are for the pre-financialization, the dashed lines are for the financialization with constrained investors, and the dotted lines are for the financialization with unconstrained investors.

Unchanged results for the front month risk premium

Non-integrated markets: risk premia

The red lines are for $\lambda_p=0$, the blue lines are for $\lambda_p=1$, and the green lines are for $\lambda_p=2$. The thick lines are for the pre-financialization, the dashed lines are for the financialization with constrained investors, and the dotted lines are for the financialization with unconstrained investors.

Unchanged results for the front month risk premium

Results for the deferred risk premium:

- Type of investors matters
- Lower impact with constrained investors
- ► Low diversification effect
- No direct investment pressure effect

Non-integrated markets: term structure of risk premia

The blue line is for the pre-financialization economy $(\lambda_{in}=0)$, the black lines are for the post-financialization economies with $\lambda_{in}=0.5$, and the orange lines are for the post-financialization economies with $\lambda_{in}=3$. The dashed lines are for the financialization with constrained investors, and the dotted lines are for the financialization with unconstrained investors.

Results:

- Unchanged with unconstrained investors
- Term structure can be steeper
- Constrained investors reinforce the non-integration

Markets dominated by long hedgers

Context:

- ▶ De Roon et al. [2000]: substantial variations inside each commodity market and form market to market in the level and the sign of the hedging pressure
- main hedgers are not only producers

Markets dominated by long hedgers

Context:

- ▶ De Roon et al. [2000]: substantial variations inside each commodity market and form market to market in the level and the sign of the hedging pressure
- main hedgers are not only producers

What do I do: change the sign of the covariance between the physical revenue and the futures price

Non-integrated markets: risk premia

The red lines are for $\lambda_p=0$, the blue lines are for $\lambda_p=1$, and the green lines are for $\lambda_p=2$. The thick lines are for the pre-financialization, the dashed lines are for the financialization with constrained investors, and the dotted lines are for the financialization with unconstrained investors.

Results:

- Pre-fi: negative risk premia because of long hedging
- Post-fi: investment pressure reinforces the hedging pressure
- Post-fi: hedgers provide liquidity to investors

Non-integrated markets: term structure of risk premia

The blue line is for the pre-financialization economy $(\lambda_{in}=0)$, the black lines are for the post-financialization economies with $\lambda_{in}=0.5$, and the orange lines are for the post-financialization economies with $\lambda_{in}=3$. The dashed lines are for the financialization with constrained investors, and the dotted lines are for the financialization with unconstrained investors.

Results:

- Term structure of risk premia always in contango
- Term structure always steeper with financialization
- ► Term structure of prices always in backwardation

Conclusion

An equilibrium model of commodity futures markets which...

- 1. ... extend results regarding the functioning of commodity markets before financialization to a framework with a term structure
 - dual role of speculators: provide and consume liquidity
 - arbitrage behavior of speculators along the term structure

Conclusion

An equilibrium model of commodity futures markets which...

- 1. ... extend results regarding the functioning of commodity markets before financialization to a framework with a term structure
 - dual role of speculators: provide and consume liquidity
 - arbitrage behavior of speculators along the term structure
- ... shows that financialization changes the risk sharing function of commodity markets:
 - determinants of the risk premium change
 - propagation effect to the entire term structure
 - higher integration with the stock market
 - the effects are market dependent

Conclusion

An equilibrium model of commodity futures markets which...

- 1. ... extend results regarding the functioning of commodity markets before financialization to a framework with a term structure
 - dual role of speculators: provide and consume liquidity
 - arbitrage behavior of speculators along the term structure
- 2. ... shows that financialization changes the risk sharing function of commodity markets:
 - determinants of the risk premium change
 - propagation effect to the entire term structure
 - higher integration with the stock market
 - the effects are market dependent

Economic implications:

- the cost of hedging of hedgers changes
- speculators can both face more competition and have new profit opportunities
- ► more efficient risk sharing because of the decreased fragmentation the markets ⇒ but higher spillover and higher systemic risk?

Thank you for your attention !!

- V. V. Acharya, L. A. Lochstoer, and T. Ramadorai. Limits to arbitrage and hedging: evidence from commodity markets. Journal of Financial Economics, 109(2):441-465, 2013.
- R. W. Anderson and J.-P. Danthine. Hedger diversity in futures markets. The Economic Journal, 93(370):370-389, 1983.
- S. D. Baker. The financialization of storable commodities. Working Paper, 2016.
 - M. Boons, F. De Roon, and M. Szymanowska. The price of commodity risk in stock and futures markets. Working Paper, 2014.
- C. Brunetti and B. Buyuksahin. Is speculation destabilizing? Working Paper, CFTC, 2009. C. Brunetti and D. Reiffen. Commodity index trading and hedging costs.
- Journal of Financial Markets, 21:153–180, 2014. B. Buyuksahin and J. H. Harris. Do speculators drive crude oil futures
- prices? Energy Journal, 32(2):167–202, 2011. B. Buyuksahin and M. A. Robe. Speculators, commodities and cross-market linkages. Journal of International Money and Finance, 42:
- 38-70, 2014. I.-H. Cheng and W. Xiong. Financialization of commodity markets.
- Annual Review of Financial Economics, 6:419-441, 2014. F. De Roon, T. Nijman, and C. Veld. Hedging pressure effects in futures. markets. The Journal of Finance, 55(3):1437-1456, 2000.