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Abstract: This paper examines the dividend and investment policies of a cash constrained
firm, assuming a decreasing-returns-to-scale technology and adjustment costs. We extend
the literature by allowing the firm to draw on a secured credit line both to hedge against
cash-flow shortfalls and to invest/disinvest in productive assets. We formulate this problem
as a bi-dimensional singular control problem and use both a viscosity solution approach and
a verification technique to get qualitative properties of the value function. We further solve
quasi-explicitly the control problem in two special cases.
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1 Introduction

In a world of perfect capital market, firms could finance their operating costs and investments
by issuing shares at no cost. As long as the net present value of a project is positive, it will
find investors ready to supply funds. This is the central assumption of the Modigliani and
Miller theorem [22]. On the other hand, when firms face external financing costs, these costs
generate a precautionary demand for holding liquid assets and retaining earnings. This de-
parture from the Modigliani-Miller framework has received a lot of attention in recent years
and has given birth to a serie of papers explaining why firms hold liquid assets. Pioneering
papers are Jeanblanc and Shiryaev [17], Radner and Shepp [26] while more recent stud-
ies include Bolton, Chen and Wang [4], Décamps, Mariotti, Rochet and Villeneuve [7] and
Hugonnier, Malamud and Morellec [16]. In all of these papers, it is assumed that firms are
all equity financed. Should it runs out of liquidity, the firm either liquidates or raises new
funds in order to continue operations by issuing equity. This binary decision only depends
on the severity of issuance costs.
The primary objective of our paper is to study a setup where a cash-constrained firm has a
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mixed capital structure. To do this, we build on the paper by Bolton, Chen and Wang [4]
chapter V to allow the firm to access a secured credit line. While [4] assumed a constant-
returns-to-scale and homogeneous adjustment costs which allows them to work with the
firm’s cash-capital ratio and thus to reduce the dimension of their problem, we rather con-
sider a decreasing-returns-to-scale technology with linear adjustments costs.
Bank credit lines are a major source of liquidity provision in much the same way as holding
cash does. Kashyap, Rajan and Stein [18] found that 70% of bank borrowing by US small
firms is through credit line. However, access to credit line is contingent to the solvency of
the borrower which makes the use on credit line costly through the interest rate and thus
makes it an imperfect substitute for cash (Sufi [28]). From a theoretical viewpoint, the use
of credit lines can be justified by moral hazard problems (Holmstrom-Tirole [15]) or from
the fact that banks can commit to provide liquidity to firms when capital market cannot
because banks have better screening and monitoring skills (Diamond [9])
In this paper, we model credit line as a full commitment lending relationship between a firm
and a bank. The lending contract specifies that the firm can draw on a line of credit as long
as its outstanding debt, measured as the size of the firm’s line of credit, is below the value of
total assets (credit limit). The liability side of the balance sheet of the firm consists in two
different types of owners: shareholders and bankers. Should the firm be liquidated, bankers
have seniority over shareholders on the total assets. We assume that the secured line of
credit continuously charges a variable spread1 over the risk-free rate r indexed on the firm’s
outstanding debt, the higher the size of firm’s line of credit, the higher the spread is. With
this assumption, the secured line of credit is somehow similar to the performance-sensitive
debt studied in [21] except that the shareholders are here forced to go bankrupt when they
are no more able to secure the credit line with their assets.

Many models initiated by Black and Cox [3] and Leland [19] that consider the traditional
tradeoff between tax and bankruptcy costs as an explanation for debt issuance study firms
liabilities as contingent claims on its underlying assets, and bankruptcy as an endogenous
decision of the firm management. On the other hand, these models assume costless equity
issuance and thus put aside liquidity problems. As a consequence, the firm’s decision to
borrow on the credit market is independent from liquidity needs and investment decisions.
A notable exception is a recent paper by Della Seta, Morellec, Zucchi [8] which studies the
effects of debt structure and liquid reserves on banks’ insolvency risk. Our model belongs
to the class of models that consider endogenous bankruptcy of a firm with mixed capital
structure replacing taxes with liquidity constraints.
From a mathematical point of view, problems of cash management have been formulated
as singular stochastic optimal control problems. As references for the theory of singular
stochastic control, we may mention the pioneering works of Haussman and Suo [12] and
[13] and for application to cash management problems Højgaard and Taksar [14], Asmussen,
Højgaard and Taksar [1], Choulli, Taksar and Zhou [5], Paulsen [24] among others. To merge
corporate liquidity, investment and financing in a tractable model is challenging because it
involves a rather difficult three-dimensional singular control problem with stopping where
the state variables are the book value of equity, the size of productive asset and the size of the

1The spread may be justified by the cost of equity capital for the bank. Indeed, the full commitment to
supply liquidity up to the firm’s credit limit prevents bank’s shareholders to allocate part of their equity
capital to more valuable investment opportunities.
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firm credit line while the stopping time is the decision to default. The literature on multi-
dimensional control problems relies mainly on the study of leading examples. A seminal
example is the so-called finite-fuel problem introduced by Benes, Shepp and Witsenhausen
[2]. This paper provides a rare example of a bi-dimensional optimization problem that
combines singular control and stopping that can be solved explicitly by analytical means.
More recently, Federico and Pham [10] have solved a degenerate bi-dimensional singular
control problem to study a reversible investment problem where a social planner aims to
control its capacity production in order to fit optimally the random demand of a good. Our
paper complements the paper by Federico and Pham [10] by introducing firms that are cash-
constrained2. To our knowledge, this is the first time that such a combined approach is used.
This makes the problem much more complicated and we do not pretend solving it with full
generality, but rather, we pave the way for future developments of these multidimensional
singular control models. In particular, we lose the global convexity property of the value
function that leads to the necessary smooth-fit property in [10] (see Lemma 8). Instead, we
will give properties of the value function (see Proposition 6) and characterize it by means
of viscosity solution (see Theorem 2). Furthermore, we will solve explicitly by a standard
verification argument the peculiar case of costless reversible investment. A last new result is
our characterization of the endogenous bankruptcy in terms of the profitability of the firm
and the spread function.

The remainder of the paper is organized as follows. Section 2 introduces the model with
a productive asset of fixed size, formalizes the notion of secured line of credit and defines the
shareholders value function. Section 3 contains our first main result, it describes the optimal
credit line policy and gives the analytical characterization of the value function in terms of
a free boundary problem for a fixed size of productive assets. Section 4 is a technical section
that builds the value function by solving explicitly the free boundary problem. Section 5
extends the analysis to the case of reversible investment on productive assets and paves the
way to a complete characterization of the dividend and investment policies.

2 The No-investment Model

We consider a firm owned by risk-neutral shareholders, with a productive asset of fixed size
K, whose price is normalized to unity, that has an agreement with a bank for a secured line
of credit. The credit line is a source of funds available at any time up to a credit limit defined
as the total value of assets. The firm has been able to secure the credit line by posting its
productive assets as collateral. Nevertheless, in order to make the credit line attractive
for bank’s shareholders that have dedicated part of their equity to this agreement, we will
assume that the firm will pay a variable spread over the risk-free rate r depending on the
size of the used part of the credit line. In this paper, the credit line contract is given and
thus the spread is exogenous, see Assumption 1. Finally, building on Diamond’s result [9]
we assume that the costs of equity issuance are so high that the firm is unwilling to increase
its cash reserves by raising funds in the equity capital market and prefers drawing on the
credit line. The firm is characterized at each date t by the following balance sheet:

2Ly Vath, Pham and Villeneuve [20] have also studied a reversible investment problem in two alternative
technologies for a cash-constrained firm that has no access to external funding
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K Xt

Mt Lt

• K represents the firm’s productive assets, assumed to be constant3 and normalized to
one.

• Mt represents the amount of cash reserves or liquid assets.

• Lt represents the size of the credit line, i.e. the amount of cash that has been drawn
on the line of credit.

• Finally, Xt represents the book value of equity.

The productive asset continuously generates cash-flows over time. The cumulative cash-
flows process R = (Rt)t≥0 is modeled as an arithmetic Brownian motion with drift µ and
volatility σ which is defined over a complete probability space (Ω,F ,P) equipped with a
filtration (Ft)t≥0. Specifically, the cumulative cash-flows evolve as

dRt = µ dt+ σ dBt

where (Bt)t≥0 is a standard one-dimensionnal Brownian motion with respect to the filtration
(Ft)t≥0.

Credit line requires the firm to make an interest payment that is increasing in the size
of the used part of the credit line. We assume that the interest payment is defined by a
function α(.) where

Assumption 1 α is a strictly increasing, continuously differentiable convex function such
that

∀x ≥ 0, α′(x) ≥ r and α(0) = 0. (1)

The credit line spread α(.)− r is thus strictly positive and increasing.

The liquid assets earn a rate of interest r − δ where δ ∈ (0, r] represents a carry cost of
liquidity4. Thus, in this framework, the cash reserves evolve as

dMt = (r − δ)Mt−dt+ (µ− α(Lt−))dt+ σdBt − dZt + dLt (2)

where (Zt)t is an increasing right-continuous (Ft)t adapted process representing the cumu-
lative dividend payment up to time t and (Lt)t is a positive right-continuous (Ft)t adapted
process representing the size of the credit line (outstanding debt) at time t. Using the
accounting relation 1 +Mt = Xt +Lt, we deduce the dynamics for the book value of equity

dXt = (r − δ)Xt−dt+ (µ− (r − δ) + (r − δ)Lt− − α(Lt−))dt+ σdBt − dZt. (3)

Finally, we assume the firm is cash-constrained in the following sense:

3The extension to the case of variable size will be studied in Section 4
4This assumption is standard in models with cash. It captures in a simple way the agency costs, see [7],

[16] for more details

4



Assumption 2 The cash reserves must be non negative and the firm management is forced
to liquidate when the book value of equity hits zero. Using the accounting relation, this is
equivalent to assume bankers get back all the productive assets after bankruptcy.

The goal of the management is to maximize shareholders value which is defined as the
expected discounted value of all future dividend payouts. Because shareholders are assumed
to be risk-neutral, future cash-flows are discounted at the risk-free rate r. The firm can stop
its activity at any time by distributing all of its assets to stakeholders. Thus, the objective
is to maximize over the admissible control π = (L,Z) the functional

V (x, l; π) = Ex,l
(∫ τ0

0

e−rtdZt

)
where

τ0 = inf{t ≥ 0, Xπ
t ≤ 0}

according to Assumption 2. Here x (resp. l) is the initial value of equity capital (resp.
debt). We denote by Π the set of admissible control variables and define the shareholders
value function by

V ∗(x, l) = sup
π∈Π

V (x, l; π). (4)

Remark 1 We suppose that the cash reserves must be non negative (Assumption 2) so to
be admissible, a control π = (L,Z) must satisfy at any time t

dZt ≤ Xt− .

3 No-investment Model solution

This section derives the shareholders value and the optimal dividend and credit line poli-
cies. It relies on a standard HJB characterization of the control problem and a verification
procedure.

3.1 Optimal credit line issuance

The shareholders optimization problem (4) involves two state variables, the value of equity
capital Xt and the size of the credit line Lt, making its resolution difficult. Fortunately,
the next proposition will enable us to reduce the dimension and make it tractable the
computation of V ∗. Proposition 1 shows that credit line issuance is only optimal when the
cash reserves are depleted.

Proposition 1 A necessary and sufficient condition to draw on the credit line is that the
cash reserves are depleted, that is

∀t ∈ R+, LtMt = 0 or equivalently Lt = (1−Xt)
+.
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Proof: First, by Assumption 2, it is clear that the firm management must draw on the
credit line when cash reserves are nonpositive. Conversely, assume that the level of cash
reserves m is strictly positive. We will show that it is always better off to reduce the level of
outstanding debt by using the cash reserves. We will assume that the initial size of the credit
line is L0− = l > 0 and denote πt = (Lt, Zt) any admissible strategy. Let us define by φ the
cost of the credit line on the variation of the book value of equity, that is φ(l) = α(l)−(r−δ)l
such that the book value of equity dynamics is

dXt = (r − δ)Xt−dt+ (µ− (r − δ)− φ(Lt−))dt+ σdBt − dZt. (5)

Note that φ is strictly increasing. We first assume that the firm does not draw on the credit
line at time 0, L0 = l. Because m > 0, we will built a strategy from π as follows:{

Lε0 = l − ε for 0 < ε < min(m, l) and 0 ≤ Lεt ≤ Lt,

Zε
t = Zt +

∫ t
0

(φ(Ls)− φ(Lεs)) ds

Note that the credit line issuance strategy Lε consists in always having less debt that under
the credit line issuance strategy L and because φ is increasing, the dividend strategy Zε

t

pays more than the dividend strategy Zt. Furthermore, denoting by πε = (Lεt, Z
ε
t ), equation

(5) shows that the bankruptcy time under πε starting from (x, l − ε) and the bankruptcy
time under π starting from (x, l) have the same distribution. Therefore,

V (x, l; πε) = E(x,l−ε)

(∫ τπ
ε

0

0

e−rs dZε
s

)

> E(x,l−ε)

(∫ τπ
ε

0

0

e−rs dZs

)

= E(x,l)

(∫ τπ0

0

e−rs dZs

)
= V (x, l; π),

which shows that it is better off to follow πε than π. So if m > l, it is optimal to set l = 0 by
using m− l units of cash reserves while if m < l, it is optimal to reduce the debt to l −m.
In any case, at any time Lt = (1−Xt)

+.
Now, if we assume that the firm draw on the credit line at time 0, i.e. ∆L0 6= 0, two cases
have to be considered.

• L0 = 0 which is possible only if m > l. In that case, we set Lεt = Lt and Zε
t = Zt for

t > 0.

• L0 > 0. In that case, we take the same strategy πε with 0 < ε < min(m, l + ∆L0).

�
According to Proposition 1, we define the value function as v∗(x) = V ∗(x, (1 − x)+). The
rest of the section is concerned with the derivation of v∗.
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3.2 Analytical Characterization of the firm value

Because the level of capital is assumed to be constant, Proposition 1 makes our control
problem one-dimensional. Thus, we will follow a standard verification procedure to char-
acterize the value function in terms of a free boundary problem. In order to focus on the
impact of credit line on the liquidity management, we will assume hereafter that δ = r. This
assumption is without loss of generality but allow us to be more explicit in the analytical
derivation of the HJB free boundary problem. We denote by L the differential operator:

LΦ = (µ− α((1− x)+))Φ
′
(x) +

σ2

2
Φ
′′
(x)− rΦ. (6)

We start by providing the following standard result which establishes that a smooth solution
to a free boundary problem coincides with the value function v∗.

Proposition 2 Assume there exists a C1 and piecewise twice differentiable function w on
(0,+∞) together with a pair of constants (a, b) ∈ R+ × R+ such that,

∀x ≤ a, Lw ≤ 0 and w(x) = x

∀a ≤ x ≤ b, Lw = 0 and w′(x) ≥ 1

∀x > b, Lw ≤ 0 and w′(x) = 1.

(7)

with w
′′
(b) = 0 (8)

then w = v∗.

Proof: Fix a policy π = (Z) ∈ Π. Let :

dXt = (µ− α((1−Xt−)+)dt+ σdBt − dZt, X(0−) = x

be the dynamic of the book value of equity under the policy π. Let us decompose Zt =
Zc
t + ∆Zt for all t ≥ 0 where Zc

t is the continuous part of Z.
Let τε the first time when Xt = ε. Using the generalized Itô’s formula, we have :

e−r(t∧τε)w(Xt∧τε) = w(x) +

∫ t∧τε

0

e−rsLw(Xs)ds+

∫ t∧τε

0

σe−rsw
′
(Xs)dBs

−
∫ t∧τε

0

e−rsw
′
(Xs)dZ

c
s

+
∑

0≤s≤t∧τε

e−rs[w(Xs)− w(Xs−)].

Because w′ is bounded, the third term is a square integrable martingale. Taking expectation,
we obtain

w(x) = Ex[e−r(t∧τε)w(Xt∧τε)]− Ex
[∫ t∧τε

0

e−rsLw(Xs)ds

]
+ Ex

[∫ t∧τε

0

e−rsw
′
(Xs)dZ

c
s

]
− Ex

[ ∑
0≤s≤t∧τε

e−rs[w(Xs)− w(Xs−)]

]
.
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Because w′ ≥ 1, we have w(Xs) − w(Xs−) ≤ ∆Xs = −∆Zs therefore the third and the
fourth terms are bounded below by

Ex
(∫ t∧τε

0

e−rsw
′
(Xs)dZs

)
.

Furthermore w is positive because w is increasing with w(0) = 0 and Lw ≤ 0 thus the first
two terms are positive. Finally,

w(x) ≥ Ex
(∫ t∧τε

0

e−rsw
′
(Xs)dZs

)
≥ Ex

(∫ t∧τε

0

e−rsdZs

)
.

Letting t → +∞ and ε→ 0 we obtain w(x) ≥ v∗(x).
To show the reverse inequality, we will prove that there exists an admissible strategy π∗ such
that w(x) = v(x, π∗). Let (X∗t , Z

∗
t ) be the solution of

X∗t =

∫ t

0

(µ− α((1−Xs−)+))ds+ σBt − Z∗t (9)

where,

Z∗t = (x11{x≤a} + (x− b)+)1{t=0−} +

∫ t∧τ−a

0

1{X∗s=b}dZ
∗
s + a1{t≥τa} (10)

with
τa = inf{t ≥ 0, X∗t− ≤ a}

whose existence is guaranteed by standard results on the Skorokhod problem (see for example
Revuz and Yor [27]). The strategy π∗ = (Z∗t ) is admissible. Note also that X∗t is continuous
on [0, τ−a ]. It is obvious that v(x, π∗) = x = w(x) for x ≤ a. Now suppose x > a. Along the
policy π∗, the liquidation time τ0 coincides with τa because X∗τa = 0. Proceeding analogously
as in the first part of the proof, we obtain

w(x) = Ex
[
e−r(t∧τ0)w(X∗t∧τ0)

]
+ Ex

[∫ t∧τ−0

0

e−rsw
′
(X∗s )dZ∗s

]
+ Ex

[
11t>τ0e

−rτ0(w(X∗τ0−)− w(X∗τ0))
]

= Ex
[
e−r(t∧τ0)w(X∗t∧τ0)

]
+ Ex

[∫ t∧τ−0

0

e−rsw
′
(b)dZ∗s

]
+ Ex

[
11t>τ0e

−rτ0a
]

= Ex
[
e−r(t∧τ0)w(X∗t∧τ0)

]
+ Ex

[∫ t∧τ0

0

e−rsdZ∗s

]
,

where the last two equalities uses, w(a) = a w
′
(b) = 1 and (∆Z∗)τ0 = a. Now, because

w(0) = 0,
Ex
[
e−r(t∧τ0)w(X∗t∧τ0)

]
= Ex

[
e−rtw(X∗t )11t≤τ0

]
.

Furthermore, because w has at most linear growth and π∗ is admissible, we have

lim
t→∞

Ex
[
e−rtw(X∗t )11t≤τ0

]
= 0.
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Therefore, we have by letting t tend to +∞,

w(x) = Ex
[∫ τ0

0

e−rsdZ∗s

]
= v(x, π∗)

which concludes the proof. �

Remark 2 We notice that the proof remains valid when a = 0 and w′(0) is infinite by a
standard localisation argument which will be the case in section 4.

3.3 Optimal Policies

The verification theorem allows us to characterize the value function. The following theorem
summarizes our findings.

Theorem 1 Under Assumption 1 and 2, the following holds:

• If µ ≤ r, it is optimal to liquidate the firm, v∗(x) = x.

• If µ ≥ α(1), the value of the firm is an increasing and concave function of the book
value of equity. Any excess of cash above the threshold b∗ = inf{x > 0, (v∗)

′
(x) = 1}

is paid out to shareholders.(See Figure 1).

• If µ < α(1), the value of the firm is an increasing convex-concave function of the book
value of equity. When the book value of equity is below the threshold a = sup{x >
0, v∗(x) = x}, it is optimal to liquidate. Any excess of cash above the threshold b∗a =
inf{x > a, (v∗)

′
(x) = 1} is paid out to shareholders.(See Figure 2)

It is interesting to compare our results with those obtained in the case of all equity fi-
nancing. First, because the use of credit line is costly, it is optimal to wait that the cash
reserves are depleted to draw on it. Moreover, there exists a target cash level above which it
is optimal to pay out dividends. These two first findings are similar to the case of all equity
financing. On the other hand, the marginal value of cash may not be monotonic in our
case. Indeed, when the cost of the credit line is high, it becomes optimal for shareholders
to terminate the lending relationship. This embedded option value makes the shareholder
value locally convex in the neighborhood of the liquidation threshold a. The higher is the
cost, measured by λ in our simulation, the sooner is the strategic default or equivalently,
the value function decreases, while the embedded exit option increases, with the cost of the
credit line. The strategic default comes from the fact that the instantaneous firms prof-
itability µ − α(x) becomes negative for low value of equity capital. This is a key feature
of our model that does not appear when the firm is all-equity, where the firm profitability
is constant and the marginal value of cash at zero is the only statistic either to trigger the
equity issuance or to liquidate.

Figure 1 plots some value functions, when µ ≥ α(1), using a linear function for α,
α(x) = λx with different values of λ.
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Figure 1: Comparing shareholders value functions with µ = 0.25, r = 0.02, σ = 0.3 and
µ ≥ α(1) for different values of λ where α(x) = λx.

Figure 2 plots some value functions, when α(1) > µ, using a linear function for α,
α(x) = λx for different values of λ.
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Figure 2: Comparing shareholders value functions with µ = 0.25, r = 0.02, σ = 0.3 and
α(1) > µ for different values of λ where α(x) = λx.

Next section is devoted to the proof of Theorem 1. The proof is based on an explicit
construction of a smooth solution of the free boundary problem and necessitates a series of
technical lemmas.

4 Solving the free boundary problem

The first statement of Theorem 1 comes from the fact that the function w̃(x) = x satisfies
Proposition 2 when µ ≤ r. To see this, we have to show that Lw̃(x) is nonpositive for any
x ≥ 0. A straightforward computation gives

for x > 1, Lw̃(x) = µ− rx < µ− r ≤ 0,

for x ≤ 1, Lw̃(x) = µ− α(1− x)− rx.
Using Equation (1) of Assumption 1, we observe that Lw̃(x) is nondecreasing for x ≤ 1 and
nonpositive at x = 1 when µ ≤ r.

Hereafter, we will assume that µ > r and focus on the existence of a function w and
a pair of constants (a, b) satisfying Proposition 2. We will proceed in two steps. First we
are going to establish some properties of the solutions of the differential equation Lw = 0.
Second, we will consider two different cases- one where the productivity of the firm is always
higher than the maximal interest payment α(1) ≤ µ, the other where the interest payment
of the loan may exceed the productivity of the firm α(1) > µ.
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Standard existence and uniqueness results for linear second-order differential equations imply
that, for each b, the Cauchy problem :

rw(x) = (µ− α((1− x)+))w
′
(x) +

σ2

2
w
′′
(x)

w
′
(b) = 1

w
′′
(b) = 0

(11)

has a unique solution wb over [0, b]. By construction, this solution satifies wb(b) = µ−α((1−b)+)
r

.

Extending wb linearly to [b,∞[ as wb(x) = x − b + µ−α((1−b)+)
r

, for x ≥ b yields a twice
continuously differentiable function over [0,∞[, which is still denoted by wb.

4.1 Properties of the solution to the Cauchy Problem

We will establish a serie of preliminary results of the smooth solution wb of (11).

Lemma 1 Assume b > 1. If wb(0) = 0 then wb is increasing and thus positive.

Proof: Because wb(0) = 0, wb(b) = µ
r

and Lwb = 0, the maximum principle implies wb > 0
on (0,+∞). Let us define

c = inf{x > 0, w
′

b(x) = 0}

If c = 0 then wb(0) = w
′

b(0) = w
′′

b (0) = 0. By unicity of the Cauchy problem, this would
imply wb = 0 which contradicts wb(b) = µ

r
. Thus, c > 0. If c < b, we would have wb(c) > 0,

w
′

b(c) = 0 and w
′′

b (c) ≤ 0 and thus Lwb(c) < 0 which is a contradiction. Therefore w
′

b is
always positive. �

Lemma 2 Assume b > 1. We have w
′

b > 1 and w
′′

b < 0 on [1, b[.

Proof: Because wb is smooth on ]1, b], we differentiate Equation (11) to obtain,

w
′′′

b (b) =
2r

σ2
> 0.

As w
′′

b (b) = 0 and w
′

b(b) = 1, it follows that w
′′

b < 0, and thus w
′

b > 1 over some interval
]b − ε, b[, where ε > 0. Now suppose by way of contradiction that w′b(x) ≤ 1 for some
x ∈ [1, b− ε] and let x̃ = sup{x ∈ [1, b− ε], w′b(x) ≤ 1}. Then w

′

b(x̃) = 1 and w′b(x) > 1 for
x ∈]x̃, b[, so that wb(b)−wb(x) > b−x for all x ∈]x̃, b[. Because wb(b) = µ

r
, this implies that

for all x ∈]x̃, b[,

w
′′

b (x) =
2

σ2
[rwb(x)− µw′b(x)] <

2

σ2
[r(x− b+ wb(b))− µ] =

2

σ2
r(x− b) < 0
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which contradicts w′b(b) = w′b(x̃) = 1. Therefore w′b > 1 over [1, b[. Furthermore, using
Lemma 1,

w
′′

b (x) =
2

σ2
[rwb(x)− µw′b(x)]

<
2

σ2
[rwb(x)− µ]

<
2

σ2
[rwb(b)− µ]

= 0.

�
The next result gives a sufficient condition on b to ensure the concavity of wb on (0, b).

Corollary 1 Assume b ≥ α(1)
r

and µ ≥ α(1), we have w′b > 1 and w′′b < 0 over ]0, b[.

Proof: Proceeding analogously as in the proof of Lemma 2, we define x̃ = sup{x ∈ [0, b−
ε], w′b(x) ≤ 1} such that w′b(x̃) = 1 and w′b(x) > 1 for x ∈]x̃, b[, so that wb(b)−wb(x) > b−x
for all x ∈]x̃, b[. Because b > α(1)

r
> 1, wb(b) = µ

r
, we have

w
′′

b (x) =
2

σ2
[rwb(x)− (µ− α((1− x)+))w′b(x)]

<
2

σ2
[r(x− b+ wb(b))− (µ− α((1− x)+)]

<
2

σ2
[r(x− b) + α((1− x)+)].

Denote by g the function

g(x) =
2

σ2
[r(x− b) + α(1− x)], x ∈ [0, 1[.

We have g′(x) = 2
σ2 [r−α′(1− x)] < 0 by Assumption 1. Because g(0) = 2

σ2 [−rb+α(1)] ≤ 0

if b ≥ α(1)
r

, we have w
′′

b (x) < 0 for x ∈]0, 1] which contradicts w
′

b(x̃) = 1 and w′b(1) > 1 by
Lemma 2. Therefore w′b > 1 over [0, 1[, from which it follows w′′b < 0 and wb is concave on
]0, 1[. Because Lemma 2 gives the concavity of wb on [1, b[, we conclude. � The

next proposition establishes some results about the regularity of the function b→ wb(y) for
a fixed y ∈ [0, 1[.

Lemma 3 For any y ∈ [0, 1[, b→ wb(y) is an increasing function of b over [y, 1] and strictly
decreasing over ]1,+∞[.

Proof: Consider the solutions Hy
0 and Hy

1 to the linear second-order differential equa-
tion LH = 0 over [y,∞[ characterized by the initial conditions Hy

0 (y) = 1, (Hy
0 )′(y) = 0,

Hy
1 (y) = 0, (Hy

1 )′(y) = 1. We first show that (Hy
0 )′ and (Hy

1 )′ are strictly positive on
]y,∞[. Because Hy

0 (y) = 1 and (Hy
0 )′(y) = 0, one has (Hy

0 )′′(y) = 2r
σ2 > 0, such that

13



(Hy
0 )′(x) > 0 over some interval ]y, y+ ε[ where ε > 0. Now suppose by way of contradiction

that x̃ = inf{x ≥ y + ε, (Hy
0 )′(x) ≤ 0} <∞. Then (Hy

0 )′(x̃) = 0 and (Hy
0 )′′(x̃) ≤ 0. Because

LHy
0 = 0, it follows that Hy

0 (x̃) ≤ 0, which is impossible because Hy
0 (y) = 1 and Hy

0 is
strictly increasing over [y, x̃]. Thus (Hy

0 )′ > 0 over ]y;∞[, as claimed. The proof for Hy
1 is

similar, and is therefore omitted.
Next, let WHy

0 ,H
y
1

= Hy
0 (Hy

1 )′ − Hy
1 (Hy

0 )′ be the Wronskian of Hy
0 and Hy

1 . One has
WHy

0 ,H
y
1
(y) = 1 and

∀x ≥ y, W ′
Hy

0 ,H
y
1
(x) =Hy

0 (x)(Hy
1 )′′(x)−Hy

1 (x)(Hy
0 )′′(x)

=
2

σ2
[Hy

0 (x)(rHy
1 (x)− (µ− α((1− x)+))(Hy

1 )′(x))

−Hy
1 (x)(rHy

0 (x)− (µ− α((1− x)+))(Hy
0 )′(x))]

=− 2[µ− α((1− x)+)]

σ2
WHy

0 ,H
y
1
(x).

Because α is integrable, the Abel’s identity follows by integration:

∀x ≥ y, WHy
0 ,H

y
1
(x) = exp

[
2

σ2

(
−µ(x− y) +

∫ x

y

α((1− u)+)du

)]
.

Because WHy
0 ,H

y
1
> 0, Hy

0 and Hy
1 are linearly independent. As a result of this, (Hy

0 , H
y
1 )

is a basis of the two-dimensional space of solutions to the equation LH = 0. It follows in
particular that for each b > 0, on can represent wb as :

∀x ∈ [y, b], wb(x) = wb(y)Hy
0 (x) + w′b(y)Hy

1 (x).

Using the boundary conditions wb(b) = µ−α((1−b)+)
r

and w′b(b) = 1, on can solve for wb(y) as
follows:

wb(y) =
(Hy

1 )′(b)µ−α((1−b)+)
r

−Hy
1 (b)

WHy
0 ,H

y
1
(b)

.

Using the derivative of the Wronskian along with the fact that Hy
1 is solution to LH = 0, it

is easy to verify that:

∀b ∈ [y, 1[,
dwb(y)

db
=

(Hy
1 )′(b)

(
α′(1−b)+

r
− 1
)

WHy
0 ,H

y
1
(b)

∀b ∈]1,∞[,
dwb(y)

db
=
−(Hy

1 )′(b)

WHy
0 ,H

y
1
(b)

.

So wb(y) is an increasing function of b over [y, 1] and strictly decreasing over ]1,∞[. �

Corollary 2 If b2 > b1 > 1, then wb2 < wb1.

Proof: Let us define W = wb1 − wb2 . Clearly, W > 0 on [b2,+∞[. Moreover, we
have LW = 0 on [0, b1] and W (0) > 0 by Lemma 3. Moreover, wb1(b1) = wb2(b2) and

14



wb2(b2) > wb2(b1) by Lemma 2. Therefore, the maximum principle implies wb2 < wb1 on
[0, b1]. Finally, wb2 is concave and w′b2(b2) = 1 therefore for b1 ≤ x ≤ b2,

wb2(x) ≤ wb2(b2) + x− b2

=
µ

r
+ x− b2

<
µ

r
+ x− b1

= wb1(x).

�

4.2 Existence of a solution to the free boundary problem

We are now in a position to characterize the value function and determine the optimal
dividend policy. Two cases have to be considered: when the profitability of the firm is
always higher than the maximal interest payment (µ ≥ α(1)) and when the interest payment
exceeds the profitability of the firm (µ < α(1)).

4.2.1 Case: µ ≥ α(1)

The next lemma establishes the existence of a solution wb∗ to the Cauchy problem (11) such
that wb∗(0) = 0.

Lemma 4 There exists b∗ ∈]1, µ
r
[ such that the solution to (11) satisfies wb∗(0) = 0.

Proof: Because µ ≥ α(1), we know from Corollary 1 that wµ
r

is a concave function on
[0, µ

r
]. Moreover, because µ > r, wµ

r
(µ
r
) = µ

r
. Because wµ

r
is strictly concave over ]0, µ

r
[ with

wµ
r
(µ
r
) = µ

r
and w

′
µ
r

= 1, wµ
r
(x) ≤ x for all x ∈]0, µ

r
[. In particular, wµ

r
(0) < 0.

Moreover, we have :

w0(0) =
µ− α(1)

r
≥ 0.

Therefore, Lemma 3 implies w1(0) > 0. Finally by continuity there is some b∗ ∈]1, µ
r
[ such

that wb∗(0) = 0 which concludes the proof. �

The next lemma establishes the concavity of wb∗ .

Lemma 5 The function wb∗ is concave on [0, b∗]

Proof: Because b∗ > 1, Lemma 2 implies that wb∗ is concave on [1, b∗] thus w′′b∗(1) ≤ 0.
For x < 1, we differentiate the differential equation satisfied by wb∗ to get,

σ2

2
w′′′b∗(x) + (µ− α(1− x))w′′b∗(x) + (α′(1− x)− r)w′b∗(x) = 0. (12)
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Because wb∗(0) = 0 we have w′′b∗(0) = − 2
σ2 (µ− α(1))w′b∗(0) ≤ 0 .

Now, suppose by a way of contradiction that w′′b∗ > 0 on some subinterval of [0, 1]. Because
w
′′

b∗ is continuous and nonpositive at the boundaries of [0, 1], there is some c such that
w′′′b∗(c) = 0 and w′′b∗(c) > 0. But, this implies

w′b∗(c) = −(µ− α(1− c))w′′b∗(c)
α′(1− c)− r

< 0

which is a contradiction with Lemma 1. �

Proposition 3 If µ ≥ α(1), wb∗ is the solution of the control problem (9).

Proof: Because wb∗ is concave on [0, b∗] and w′(b∗) = 1, w′ ≥ 1 on [0, b∗]. Therefore
we have a twice continuously differentiable concave function wb∗ and a pair of constants
(a, b) = (0, b∗) satisfying the assumptions of Proposition 2 and thus wb∗ = v∗. �

When the maximal interest payment is lower than the firm profitability, the value func-
tion is concave. This illustrates the shareholders’ fear to liquidate a profitable firm. In
particular, the shareholders value is a decreasing function of the volatility.

4.2.2 Case: µ < α(1)

We first show that, for all y ∈ [0, 1[, there exists by such that wby is the solution of the
Cauchy Problem (11) with wby(y) = y.

Lemma 6 For all y ∈ [0, 1[, we have w1(y) > y.

Proof: Because α is continuous with α(0) = 0 and µ > r, there exists ε such that

w1−ε(1− ε) =
(
µ−α(ε)

r

)
> 1. Differentiating Equation (11), we observe

w′′′1−ε(1− ε) =
2

σ2
(r − α′(ε)) < 0

using Equation (1). Therefore w1−ε is convex in a left neighborhood of 1 − ε. If w1−ε is

convex on (0, 1 − ε) then w1−ε(x) ≥ x − (1 − ε) + µ−α(ε)
r

> x for ε small enough and the
result is proved.
If w1−ε is not convex on (0, 1 − ε) then it will exist some x̄ < 1 − ε such that w

′′
1−ε(x̄) = 0,

w
′′′
1−ε(x̄) > 0 and w1−ε convex on ]x̄, 1−ε]. Differentiating Equation (11) at x̄ gives w

′
1−ε(x̄) <

0. Therefore w1−ε is nonincreasing in a neighborhood of x̄. Assume by a way of contradiction
that w1−ε is increasing at some point x̂ ∈ [0, x̄[. This would imply the existence of x̃ < x̄ such
that w

′
1−ε(x̃) = 0, w

′′
1−ε(x̃) < 0 and w1−ε(x̃) > 0 which contradicts Equation (11). Therefore

w1−ε is decreasing on (0, x̄) and convex on (x̄, 1− ε) which implies that w1−ε(x) > x for all
x ≤ 1 − ε. To conclude, for any y < 1, we can find ε small enough to have w1−ε(y) > y
which can be extended to w1(y) > y by Lemma 3. �
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Corollary 3 For all y ∈ [0, 1[, there is an unique by ∈]1, 1 + µ
r
[ such that wby(y) = y.

Proof: By Lemma 1, w1+µ
r

is concave on ]1, 1 + µ
r
[, thus w1+µ

r
(1) < µ

r
+ (1− (1 + µ

r
)) = 0.

Suppose that there exists c in [0, 1[ such that w1+µ
r
(c) > 0, then there exists x̃ ∈]c, 1[ such

that w1+µ
r
(x̃) < 0, w

′

1+µ
r
(x̃) = 0, w

′′

1+µ
r
(x̃) > 0 yielding to the standard contradiction with

the maximum principle. We thus have w1+µ
r
(y) < y for all y ∈ [0, 1 + µ

r
]. Using Lemma 6

and the continuity of the function b→ wb(y), it exists for all y < 1 a threshold by ∈]1, 1 + µ
r
[

such that wby(y) = y. The uniqueness of by comes from Corollary 2. �

We will now study the behavior of the first derivative of wby .

Lemma 7 There exists ε > 0 such that w
′

b1−ε
(1− ε) ≥ 1 and b1−ε <

µ
r
.

Proof: Because α(0) = 0 and µ > r, it exists η > 0 such that

∀x ∈ [1− η, 1], α(1− x) + rx− µ < 0. (13)

Moreover wµ
r

is strictly concave on [1, µ
r
[ by Lemma 2 and thus

wµ
r
(1) ≤ wµ

r
(
µ

r
) + (1− µ

r
)w
′
µ
r
(
µ

r
)

= 1.

Because by Lemma 2, we have w′µ
r
> 1 on [1, µ

r
[, there exists ν > 0 such that ∀x ∈ [1 −

ν, 1], wµ
r
(x) < x. Let ε = min(η, ν). By Corollary 3, it exists b1−ε ∈]1, 1 + µ

r
[ such that

wb1−ε(1− ε) = 1− ε. We have wb1−ε(1− ε) > wµ
r
(1− ε) and then b1−ε <

µ
r

by Corollary 2.
Let us consider the function W (x) = wb1−ε(x) − x, we have W (1 − ε) = 0, W (b1−ε) =
µ
r
− b1−ε > 0. Moreover, W is solution

(µ− α((1− x)+)W ′(x) +
σ2

2
W ′′(x)− rW (x) = α((1− x)+) + rx− µ. (14)

On [1 − ε, 1], the second member of Equation (14) is negative due to Equation (13). On
[1, b1−ε] , it is equal to rx − µ which is negative because b1−ε <

µ
r
. Assume by a way of

contradiction that there is some x ∈ [1 − ε, b1−ε] such that W (x) < 0, then it would exist
x̃ ∈ [1 − ε, b1−ε] such that W (x̃) < 0,W ′(x̃) = 0 and W ′′(x̃) > 0 which is in contradiction
with Equation (14). Hence, W is a positive function on [1− ε, b1−ε] with W (1− ε) = 0 which
implies w′b1−ε(1− ε) ≥ 1. �

Lemma 8 When µ < α(1), wb0 is a convex-concave function.

Proof: According to Corollary 3, there exists b0 ∈]1, 1 + µ
r
[ such that wb0(0) = 0 and by

Lemma 1, w′b0 > 0 on (0, b0). Using Equation (11), we thus have w
′′

b0
(0) > 0 implying that wb0

is strictly convex on a right neighborhood of 0. Because b0 > 1, Lemma 2 implies w′′b0(x) < 0
on [1, b0[. If there is more than one change in the concavity of wb0 , it will exist x̄ ∈ [0, 1[
such that w′′′b0(x̄) > 0, w′′b0(x̄) = 0 and w′b0(x̄) ≥ 0 yielding the standard contradiction. �
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Proposition 4 If µ < α(1) and w′b0(0) ≥ 1, wb0 is the shareholders value function (4)

Proof: It is straightforward to see that the function wb0 satisfies Proposition 2 when
w′b0(0) ≥ 1. �

Now, we will consider the case w′b0(0) < 1.

Lemma 9 If w′b0(0) < 1, it exists a ∈]0, 1[ such that wba(a) = a and w′ba(a) = 1.

Proof: Let φ(x) = w
′

bx
(x). By assumption, we have φ(0) < 1 and by Lemma 7, φ(1−ε) > 1.

By continuity of φ, there exists a ∈]0, 1[ such that w′ba(a) = 1. By definition, the function
wba satisfies wba(a) = a. �

Lemma 10 wba is a convex-concave function on [a, ba].

Proof: First, we show that wba is increasing on [a, ba]. Because w′ba(a) = 1, we can define
x̃ = min{x > a,w′ba(x) ≤ 0}. If x̃ ≤ ba, we will have w′ba(x̃) = 0, wba(x̃) > 0 and w′′ba(x̃) ≤ 0
yielding the standard contradiction. According to Lemma 1, we have w′′ba(x) < 0 over [1, ba[
because ba > 1. Proceeding analogously as in the proof of Lemma 8, we prove that wba is a
convex-concave function because it cannot change of concavity twice. �

Lemma 11 We have wba > 1 on (a, ba) with ba <
µ
r
.

Proof: According to Lemma 10, wba is convex-concave with w′ba(a) = 1 and w′ba(ba) = 1,
therefore ∀x ∈]a, ba[, w

′
ba

(x) > 1. As a consequence, wba(x) > x on ]a, ba] and in particular
wba(1) > 1. Remembering that wµ

r
(1) < 1 and using Corollary 2, we have ba <

µ
r
. �

Proposition 5 If w′b0(0) < 1, the function

w(x) =


x for x ≤ a

wba(x) for a ≤ x ≤ ba
x− ba + µ

r
for x ≥ ba

is the shareholders value function (4).

Proof: it is straightforward to check that w satisfies Proposition 2. �
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5 The Investment Model

In this section, we enrich the model to allow variable investment in the productive assets. We
will assume a decreasing-returns-to-scale technology by introducing an increasing concave
function β with limx→∞ β(x) = β̄ that impacts the dynamic of the book value of equity as
follows: {

dXt = β(Kt)(µdt+ σdWt)− α((Kt −Xt)
+)dt− γ|dIt| − dZt

dKt = dIt = dI+
t − dI−t

(15)

where I+
t (resp. I−t ) is the cumulative capital invested (resp. disinvested) in the productive

assets up to time t, γ > 0 is an exogenous proportional cost of investment. Assumption (2)
thus forces liquidation when the level of outstanding debt reaches the sum of the liquidation
value of the productive assets and the liquid assets, (1 − γ)Kt + Mt. The goal of the
management is to maximize over the admissible strategies π = (Zt, It)t≥0 the risk-neutral
shareholders value

V ∗(x, k) = sup
π

Ex,k
(∫ τ0

0

e−rtdZt

)
(16)

where
τ0 = inf{t ≥ 0, Lt ≥ (1− γ)Kt +Mt} = inf{t ≥ 0, Xt ≤ γKt}.

By definition, we have
∀k ≥ 0, V ∗(γk, k) = 0. (17)

5.1 Dynamic programming and free boundary problem

In order to derive a classical analytic characterization of V ∗ in terms of a free boundary
problem, we rely on the dynamic programming principle as follows
Dynamic Programming Principle: For any (x, k) ∈ S where S = {(x, k) ∈ R2

+, x ≥ γk}, we
have

V ∗(x, k) = sup
π

E
(∫ θ

0

e−rtdZt + e−rθV ∗(Xθ, Kθ)

)
(18)

where θ is any stopping time.
Take the suboptimal control π which consists in investing only at time t = 0 a certain
amount h. Then, according to the dynamic programming principle, we have with θ = 0+,

V ∗(x, k) ≥ V ∗(X0+ , K0+) = V ∗(x− γh, k + h).

So,
V ∗(x, k)− V ∗(x− γh, k) + V ∗(x− γh, k)− V ∗(x− γh, k + h) ≥ 0.

Dividing by h, we have

γ
V ∗(x, k)− V ∗(x− γh, k)

γh
− V ∗(x− γh, k + h)− V ∗(x− γh, k)

h
≥ 0.

If V ∗ were smooth enough, we can let h tend to 0 to obtain

γ
∂V ∗

∂x
− ∂V ∗

∂k
≥ 0.
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Likewise, we can prove that

γ
∂V ∗

∂x
+
∂V ∗

∂k
≥ 0

∂V ∗

∂x
− 1 ≥ 0

and
−LkV ∗ ≥ 0

where Lk is the second order differential operator

Lkw =
(
β(k)µ− α((k − x)+)

)∂w
∂x

+
σ2β(k)2

2

∂2w

∂x2
− rw. (19)

The aim of this section is to characterize via the dynamic programming principle the share-
holders value as the unique continuous viscosity solution to the free boundary problem in
order to use a numerical procedure to describe the optimal policies.

F (x, k, V ∗, DV ∗, D2V ∗) = 0 (20)

where

F (x, k, w,Dw,D2w) = min

(
−Lkw,

∂w

∂x
− 1, γ

∂w

∂x
− ∂w

∂k
, γ
∂w

∂x
+
∂w

∂k

)
.

We will first establish the continuity of the shareholders value function which relies
on some preliminary well-known results about hitting times we prove below for sake of
completeness.

Lemma 12 Let a < b and (xn)n≥0 a sequence of real numbers such that limn→+∞ xn = b
and minn xn > a. Let (Xn

t )n≥0 the solution of the stochastic differential equation{
dXn

t = µn(Xn
t )dt+ σndWt

Xn
0 = xn

where µn and σn satisfy the standard global Lipschitz and linear growth conditions. Moreover,
(σn)n≥0 are strictly positive real numbers converging to σ > 0 and (µn)n≥0 is a sequence of
bounded functions converging uniformly to µ. Let us define Tn = inf{t ≥ 0, Xn

t = a} and
θn = inf{t ≥ 0, Xn

t = b}. We have

lim
n→+∞

P(θn < Tn) = 1.

Proof: Let us define the functions Un, Fn : I → R, on some bounded interval I containing
(a, b) as

Un(y) =

∫ y

0

µn(z + xn)dz, Fn(y) =

∫ y

0

e
− 2Un(z)

σ2n dz.
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Because (µn)n≥0 converges uniformly to µ, we note that (Fn, Un)n≥0 converges uniformly to
(F,U) where

F (y) =

∫ y

0

e−
2U(z)

σ2 dz

and

U(y) =

∫ y

0

µ(z + b)dz.

Let Y n
t = Xn

t − xn, Mn
t = Fn(Y n

t ) and τn = inf{t ≥ 0, Y n
t /∈]an, bn[} with an = a − xn and

bn = b − xn. We first show that τn is integrable. Because Fn is the scale function of the
process Y n

t , Mn
t is a local martingale with quadratic variation

< Mn >t=

∫ t

0

σ2
ne
− 4Un(Y ns )

σ2n ds.

Because

E(< Mn >t∧τn ) ≤ σ2
nt exp

(
− 4

σ2
n

min
y∈[an,bn]

Un(y)

)
< +∞

the processes (Mn
t∧τn)t≥0 and ((Mn

t∧τn)2− < Mn >t∧τn)t≥0 are both martingales. By Optional
sampling theorem

E[(Mn
t∧τn)2− < Mn >t∧τn ] = 0

which implies

E
[∫ t

0

1[0,τn](s)σ
2
ne
− 4Un(Y ns )

σ2n ds

]
= E[F 2

n(Y n
t∧τn)]

and

σ2
n exp

(
− 4

σ2
n

max
y∈[an,bn]

Un(y)

)
E[t ∧ τn] ≤ max

y∈[an,bn]
F 2
n(y)

thus there is a constant Kn > 0 such that

∀t ≥ 0,E[t ∧ τn] ≤ Kn.

We conclude by dominated convergence that τn is integrable. The martingale property
implies

E[Fn(Y n
t∧τn)] = 0

which yields
E[Fn(Y n

τn)] = 0,

by dominated convergence because

∀t ≥ 0, |Fn(Y n
t∧τn)| ≤ max

y∈[an,bn]
|Fn(y)|.

This is equivalent to

Fn(an)(1− p(an, bn)) + Fn(bn)p(an, bn) = 0
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with p(an, bn) = P(Y n
τn = bn). Hence,

p(an, bn) =
−Fn(an)

Fn(bn)− Fn(an)
.

Moreover,

P(θn < Tn) = P(Xn
τn = b)

= P(Y n
τn = b− xn)

= p(an, bn).

Using the uniform convergence of Fn, we have

lim
n→+∞

P(θn < Tn) = lim
n→+∞

p(an, bn)

=
−F (a− b)

F (0)− F (a− b)
=1.

�

Lemma 13 Let a < b and (xn)n≥0 a sequence of real numbers such that limn→+∞ xn = b
and minn xn > a. Let (Xn

t )n≥0 the solution to{
dXn

t = µn(Xn
t )dt+ σndWt

Xn
0 = xn

with the same assumptions as in Lemma 12. There exist constants An and Bn such that

exp

(
−b− xn

σ2
n

(
√
A2
n + 2rσ2

n − An)

)
≤ E[e−rθn ] ≤ exp

(
−b− xn

σ2
n

(
√
B2
n + 2rσ2

n −Bn)

)
.

(21)

Proof: Because µn are bounded functions, there are two constants An and Bn such that
An ≤ µn(x) ≤ Bn for all a < x < b. We define X̃n

t = xn + Ant + σnWt. By comparison, we
have X̃n

t ≤ Xn
t and θn ≤ θ̃n, with θ̃n = inf{t ≥ 0, X̃n

t = b}. But the Laplace transform of θ̃n
is explicit and given by

E[e−rθ̃n ] = exp

(
−b− xn

σ2
n

(
√
A2
n + 2rσ2

n − An)

)
which gives the left inequality of (21). The proof is similar for the right inequality introducing
X̄t

n
= xn +Bnt+ σnWt. �

Proposition 6 The shareholders value function is jointly continuous.
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Proof: Let (x, k) ∈ S and let us consider (xn, kn) a sequence in S converging to (x, k).
Therefore, {(xn − γ|k − kn|, k), (x − γ|k − kn|, kn)} ∈ S2 for n large enough. We consider
the following two strategies that are admissible for n large enough:

• Strategy π1
n: start from (x, k), invest if kn − k > 0(or disinvest if kn − k < 0) and

do nothing up to the minimum between the liquidation time and the hitting time of

(xn, kn). Denote (X
π1
n

t , K
π1
n

t )t≥0 the control process associated to strategy π1
n.

• Strategy π2
n: start from (xn, kn), invest if kn − k < 0(or disinvest if kn − k > 0) and

do nothing up to the minimum between the liquidation time and the hitting time of

(x, k). Denote (X
π2
n

t , K
π2
n

t )t≥0 the control process associated to strategy π2
n.

To fix the idea, assume kn > k. The strategy π1 makes the process (X,K) jump from (x, k)
to (x− γ(kn − k), kn).

Define
θ1
n = inf{t ≥ 0, (X

π1
n

t , K
π1
n

t ) = (xn, kn)},

θ2
n = inf{t ≥ 0, (X

π2
n

t , K
π2
n

t ) = (x, k)},

T 1
n = inf{t ≥ 0, X

π1
n,x

t ≤ γK
π1
n,k

t }
and

T 2
n = inf{t ≥ 0, X

π2
n,xn

t ≤ γK
π2
n,kn

t }.
Dynamic programming principle and V ∗(XT 1

n
, KT 1

n
) = 0 on T 1

n ≤ θ1
n yield

V ∗(x, k) ≥ E

[∫ θ1n∧T 1
n

0

e−rtdZ
π1
n

t + e−r(θ
1
n∧T 1

n)1{θ1n<T 1
n}V

∗(Xθ1n
, Kθ1n

)
)]

≥ E
[
e−rθ

1
n1{θ1n<T 1

n}V
∗(xn, kn)

]
≥
(
E
(
e−rθ

1
n
)
− E

(
e−rθ

1
n1{θ1n≥T 1

n}
))
V ∗(xn, kn)

≥
(
E
(
e−rθ

1
n
)
− P

(
θ1
n ≥ T 1

n

))
V ∗(xn, kn).

(22)
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On the other hand, using V ∗(XT 2
n
, KT 2

n
) = 0 on T 2

n ≤ θ2
n

V ∗(xn, kn) ≥ E

[∫ θ2n∧T 2
n

0

e−rtdZ
π2
n

t + e−r(θ
2
n∧T 2

n)1{θ2n<T 2
n}V

∗(Xθ2n
, Kθ2n

)
)]

≥ E
[
e−rθ

2
n1{θ2n<T 2

n}V
∗(x, k)

]
≥
(
E
(
e−rθ

2
n
)
− E

(
e−rθ

2
n1{θ2n≥T 2

n}
))
V ∗(x, k)

≥
(
E
(
e−rθ

2
n
)
− P

(
θ2
n ≥ T 2

n

))
V ∗(x, k).

(23)

The convergence of (xn, kn) implies

lim
n→+∞

(xn − γ|k − kn|, k) = (x, k)

from which we deduce using Lemma 12 that

lim
n→+∞

P(θ1
n ≥ T 1

n) = 0 (24)

and
lim

n→+∞
P(θ2

n ≥ T 2
n) = 0. (25)

Let µn(Xn
t ) = β(kn)µ− α((kn −Xn

t )+) and σn = β(kn)σ. The function µn is bounded by

An = β(kn)µ− α(kn)

Bn = β(kn)µ

thus, according to Lemma 13

exp

(
−κ

n

σ2
n

(
√
A2
n + 2rσ2

n − An)

)
≤ E[e−rθ

1
n ] ≤ exp

(
−κ

n

σ2
n

(
√
B2
n + 2rσ2

n −Bn)

)
with κn = x− xn + γ|kn − k|.
Letting n tend to +∞ and using

limn→+∞An = β(k)µ− α(k)
limn→+∞Bn = β(k)µ
limn→+∞ σn = β(k)σ

we obtain
lim

n→+∞
E(e−rθ

1
n) = lim

n→+∞
E(e−rθ

2
n) = 1. (26)

Finally, we have from (22) and (23),

V ∗(x, k) ≥ lim sup
n

V ∗(xn, kn) ≥ lim inf
n

V ∗(xn, kn) ≥ V ∗(x, k),

which proves the continuity of V ∗. �
We are now in a position to characterize the shareholders value in terms of viscosity

solution of the free boundary problem (20).
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Theorem 2 The shareholders value V ∗ is the unique continuous viscosity solution to (20)
on S with linear growth.

Proof: The proof is postponed to the Appendix �

The main interest of Theorem 2 is to guarantee that the standard numerical procedure
to solve HJB free boundary problems proposed in [11] will converge to the shareholders
value function. We obtain the following description of the control regions (Figure 3). Our
numerical analysis demonstrates that

• unlike [4], there exists an optimal level of productive assets (top of the yellow region)
and thus an objective measure of managerial overinvestment in our context. This is
clearly due to the decreasing-returns-to-scale assumption.

• constrained firms with low cash reserves, that is when equity capital is close to pro-
ductive asset size, and low equity capital will rather disinvest to offset cash-flows
shortfalls.

• constrained firms with low cash reserves and high equity capital will first draw on the
credit line to offset cash-flows shortfalls.

• the credit line is never used to invest.

25



Figure 3: Optimal control with µ = 0.25, r = 0.02, σ = 0.3, λ = 0.08, βmax = 20, β̄ = 10
and an investment cost γ = 5e−4.

While the numerical results give the above insights about the optimal policies, we have
not been able to prove rigorously the shape of the optimal control regions. Nonetheless,
making the strong assumption that there is no transaction cost γ = 0 allows us to fully
describe the control regions and gives us reasons to believe in Figure 3. This is the object
of our last subsection.

5.2 Absence of Investment cost

Using a verification procedure analogous to section 3, we characterize the value function and
the optimal policies in terms of a free boundary problem. The following proposition proved
in the Appendix summarizes our findings.

Proposition 7 When there is no cost of investment/disinvestment, γ = 0, the following
holds:

• If µβ
′
(0) ≤ r then it is optimal to liquidate the firm thus v∗(x) = x.

• If α
′
(0) > µβ

′
(0) > r and σ2β′(0) ≥ µ

(1−δ) , the shareholders value is an increasing and
concave function of the book value of equity. Any excess of cash above the threshold
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b∗ = inf{x > 0, (v∗)
′
(x) = 1} is paid out to shareholders (see Figure 4). The optimal

size of the productive asset is characterized by a deterministic function of equity capital
(see Figure 5) given by

∀0 ≤ x ≤ a, k(x) = β−1

[
µx

σ2(1− δ)

]
∀x ≥ a, k(x) = x.

where a is the unique nonzero solution of the equation

σ2(1− δ)β(a) = µa. (27)

with

δ =
2rσ2

µ2 + 2rσ2
(28)

• If α
′
(0) > µβ

′
(0) > r and σ2β′(0) < µ

(1−δ) , the shareholders value is an increasing and

concave function of the book value of equity (see Figure 6). Any excess of cash above
the threshold b∗ = inf{x > 0, (v∗)

′
(x) = 1} is paid out to shareholders. Moreover, all

the cash reserves are invested in the productive assets.

The above proposition has two interesting implications.

• When the volatility of earnings is low σ2β′(0) < µ
(1−δ) , it is optimal to invest all the

cash reserves in the productive assets and use it as a complementary substitute for
cash which is better off than using a costly credit line.

• Nonetheless, when the volatility of earnings is high, productive assets are not a perfect
substitute of cash because it implies a high risk of bankrupcy when the book value of
equity is low.

Figure 4 plots the shareholders value functions with α
′
(0) > µβ′(0) and σ2β′(0) ≥ µ

(1−δ)
for different values of β′(0) using :

• a linear function for α, α(x) = λx.

• an exponential function for β, β(x) = βmax

(
1− e

−β′(0)
βmax

x

)
.
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Figure 4: Comparing shareholders value functions with µ = 0.25, r = 0.02, σ = 0.6, λ = 0.8,
βmax = 5, for different values of β′(0) (case σ2β′(0) ≥ µ

(1−δ)).

Figure 5 plots the optimal level of productive assets for different values of σ. It shows that,
for a given level of the book value of equity, the investment level in productive assets is a
decreasing function of the volatility.
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Figure 5: Comparing optimal level of productive assets with µ = 0.25, r = 0.02, λ = 0.8,
βmax = 5, β′(0) = 2 for different values of σ.

Figure 6 plots the shareholders value functions when α′(0) > µβ′(0) and σ2β′(0) ≤ µ
(1−δ)

for different values of β′(0) using :

• a linear function for α, α(x) = λx.

• an exponential function for β, β(x) = βmax

(
1− e

−β′(0)
βmax

x

)
.
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Figure 6: Comparing shareholders value functions with µ = 0.25, r = 0.02, σ = 0.6, λ = 0.8,
βmax = 5, for different values of β′(0) (case σ2β′(0) ≤ µ

(1−δ)).

6 Appendix

6.1 Proof of Theorem 2

Supersolution property. Let (x̄, k̄) ∈ S and ϕ ∈ C2(R2
+) s.t. (x̄, k̄) is a minimum of V ∗−ϕ in a

neighborhood Bε(x̄, k̄) of (x̄, k̄) with ε small enough to ensure Bε ⊂ S and V ∗(x̄, k̄) = ϕ(x̄, k̄).
First, let us consider the admissible control π̂ = (Ẑ, Î) where the shareholders decide to never
invest or disinvest, while the dividend policy is defined by Ẑt = η for t ≥ 0, with 0 ≤ η ≤ ε.
Define the exit time τε = inf{t ≥ 0, (X x̄

t , K
k̄
t ) /∈ Bε(x̄, k̄)}. We notice that τε < τ0 for ε small

enough. From the dynamic programming principle, we have

ϕ(x̄, k̄) = V ∗(x̄, k̄) ≥ E
[∫ τε∧h

0

e−rtdẐt + e−r(τε∧h)V ∗(X x̄
τε∧h, K

k̄
τε∧h)

]
≥ E

[∫ τε∧h

0

e−rtdẐt + e−r(τε∧h)ϕ(X x̄
τε∧h, K

k̄
τε∧h)

]
. (29)
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Applying Itô’s formula to the process e−rtϕ(X x̄
t , K

k̄
t ) between 0 and τε ∧ h, and taking the

expectation, we obtain

E
[
e−r(τε∧h)ϕ(X x̄

τε∧h, K
k̄
τε∧h)

]
= ϕ(x̄, k̄) + E

[∫ τε∧h

0

e−rtLϕ(X x̄
t , K

k̄
t )dt

]
+ E

[ ∑
0≤t≤τε∧h

e−rt[ϕ(X x̄
t , K

k̄
t )− ϕ(X x̄

t− , K
k̄
t )]

]
. (30)

Combining relations (29) and (30), we have

E
[∫ τε∧h

0

e−rt(−L)ϕ(X x̄
t , K

k̄
t )dt

]
− E

[∫ τε∧h

0

e−rtdẐt

]
−E

[ ∑
0≤t≤τε∧h

e−rt[ϕ(X x̄
t , K

k̄
t )− ϕ(X x̄

t− , K
k̄
t )]

]
≥ 0. (31)

? Take first η = 0. We then observe that X is continuous on [0, τε ∧ h] and only the
first term of the relation (31) is non zero. By dividing the above inequality by h with
h→ 0, we conclude that −Lϕ(x̄, k̄) ≥ 0.

? Take now η > 0 in (31). We see that Ẑ jumps only at t = 0 with size η, so that

E
[∫ τε∧h

0

e−rt(−Lϕ)(X x̄
t , K

k̄
t )dt

]
− η − (ϕ(x̄− η, k̄)− ϕ(x̄, k̄)) ≥ 0.

By sending h→ 0, and then dividing by η and letting η → 0, we obtain

∂ϕ

∂x
(x̄, k̄)− 1 ≥ 0.

Second, let us consider the admissible control π̄ = (Z̄, Ī) where the shareholders decide to
never payout dividends, while the investment/disinvestment policy is defined by Īt = η ∈ R
for t ≥ 0, with 0 < |η| ≤ ε. Define again the exit time τε = inf{t ≥ 0, (X x̄

t , K
k̄
t ) /∈ Bε(x̄, k̄)}.

Proceeding analogously as in the first part and observing that Ī jumps only at t = 0, thus

E
[∫ τε∧h

0

e−rt(−Lϕ)(X x̄
t , K

k̄
t )dt

]
− (ϕ(x̄− γ|η|, k̄ + η)− ϕ(x̄, k̄)) ≥ 0.

Assuming first η > 0, by sending h → 0, and then dividing by η and letting η → 0, we
obtain

γ
∂ϕ

∂x
(x̄, k̄)− ∂ϕ

∂k
(x̄, k̄) ≥ 0.

When η < 0, we get in the same manner

γ
∂ϕ

∂x
(x̄, k̄) +

∂ϕ

∂k
(x̄, k̄) ≥ 0.

This proves the required supersolution property.
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Subsolution Property: We prove the subsolution property by contradiction. Suppose that
the claim is not true. Then, there exists (x̄, k̄) ∈ S and a neighbourhood Bε(x̄, k̄) of x̄, k̄,
included in S for ε small enough, a C2 function ϕ with (ϕ − V ∗)(x̄, k̄) = 0 and ϕ ≥ V ∗ on
Bε(x̄, k̄), and η > 0, s.t. for all (x, k) ∈ Bε(x̄, k̄) we have

−Lϕ(x, k) > η, (32)

∂ϕ

∂x
(x, k)− 1 > η, (33)

(γ
∂ϕ

∂x
− ∂ϕ

∂k
)(x, k) > η. (34)

(γ
∂ϕ

∂x
+
∂ϕ

∂k
)(x, k) > η. (35)

For any admissible control π, consider the exit time τε = inf{t ≥ 0, (X x̄
t , K

k̄
t ) /∈ Bε(x̄, k̄)}

and notice again that τε < τ0. Applying Itô’s formula to the process e−rtϕ(X x̄
t , K

k̄
t ) between

0 and τ−ε , we have

E[e−rτ
−
ε ϕ(Xτ−ε

, Kτ−ε
)] = ϕ(x̄, k̄)− E

[∫ τ−ε

0

e−ruLϕdu

]
(36)

+ E

[∫ τ−ε

0

e−ru(−γ ∂ϕ
∂x

+
∂ϕ

∂k
)dIc,+u

]
(37)

+ E

[∫ τ−ε

0

e−ru(−γ ∂ϕ
∂x
− ∂ϕ

∂k
)dIc,−u

]
(38)

− E

[∫ τ−ε

0

e−ru
∂ϕ

∂x
dZc

u

]
(39)

+ E

[ ∑
0<s<τε

e−rs[ϕ(Xs, Ks)− ϕ(Xs− , Ks−)]

]
(40)

Using relations (32),(33),(34),(35), we obtain
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V ∗(x̄, k̄) = ϕ(x̄, k̄)

≥ ηE

[∫ τ−ε

0

e−rudu

]
+ E[e−rτ

−
ε ϕ(Xτ−ε

, Kτ−ε
)] (41)

+ ηE

[∫ τ−ε

0

e−rudIc,+u

]
(42)

+ ηE

[∫ τ−ε

0

e−rudIc,−u

]
(43)

+ (1 + η)E

[∫ τ−ε

0

e−rudZc
u

]
(44)

− E

[ ∑
0<s<τε

e−rs[ϕ(Xs, Ks)− ϕ(Xs− , Ks−)]

]
(45)

Note that ∆Xs = −∆Zs − γ(∆I+
s + ∆I−s ), ∆Ks = ∆I+

s −∆I−s and by the Mean Value
Theorem, there is some θ ∈]0, 1[ such that,

ϕ(Xs, Ks) − ϕ(Xs− , Ks−) =
∂ϕ

∂x
(Xs− + θ∆Xs, Ks− + θ∆Ks)∆Xs +

∂ϕ

∂k
(Xs− + θ∆Xs, Ks− + θ∆Ks)∆Ks

=
∂ϕ

∂x
(Xs− + θ∆Xs, Ks− + θ∆Ks)(−∆Zs − γ(∆I+

s + ∆I−s ))

+
∂ϕ

∂k
(Xs− + θ∆Xs, Ks− + θ∆Ks)(∆I

+
s −∆I−s )

= −∂ϕ
∂x

(Xs− + θ∆Xs, Ks− + θ∆Ks)∆Zs

+

(
−γ ∂ϕ

∂x
(Xs− + θ∆Xs, Ks− + θ∆Ks) +

∂ϕ

∂k
(Xs− + θ∆Xs, Ks− + θ∆Ks)

)
∆I+

s

+

(
−γ ∂ϕ

∂x
(Xs− − θ∆Xs, Ks− + θ∆Ks) +

∂ϕ

∂k
(Xs− + θ∆Xs, Ks− + θ∆Ks)

)
∆I−s

Because (Xs + θ∆Xs, Ks + θ∆Ks) ∈ Bε(x̄, k̄), we use the relations (33),(34),(35) again

−(ϕ(Xs, Ks)− ϕ(Xs− , Ks−)) ≥ (1 + η)∆Zs + η∆I+
s + η∆I−s

Therefore,

V ∗(x̄, k̄) ≥ E[e−rτ
−
ε ϕ(Xτ−ε

, Kτ−ε
)] + E

[∫ τ−ε

0

e−rudZu

]

+ η

(
E

[∫ τ−ε

0

e−rudu

]
+ E

[∫ τ−ε

0

e−rudI+
u

]
+ E

[∫ τ−ε

0

e−rudI−u

]
+ E

[∫ τ−ε

0

e−rudZu

])
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Notice that while (X−τε , K
−
τε) ∈ Bε(x̄, k̄), (Xτε , Kτε) is either on the boundary ∂Bε(x̄, k̄) or

out of B̄ε(x̄, k̄). However, there is some random variable α valued in [0, 1] such that:

(X(α), K(α)) = (Xτ−ε
, Kτ−ε

) + α(∆Xτε ,∆Kτε)

= (Xτ−ε
, Kτ−ε

) + α(−∆Zτε − γ∆I+
τε − γ∆I−τε ,∆I

+
τε −∆I−τε) ∈ ∂Bε(x̄, k̄).

Proceeding analogously as above, we show that

ϕ(X(α), K(α))− ϕ(Xτ−ε
, Kτ−ε

) ≤ −α[(1 + η)∆Zτε + η∆I+
τε + η∆I−τε ].

Observe that

(X(α), K(α)) = (Xτε , Kτε) + (1− α)(∆Zτε + γ∆I+
τε + γ∆I−τε ,−∆I+

τε + ∆I−τε).

Starting from (X(α), K(α)), the strategy that consists in investing (1−α)∆I+
τε or disinvesting

(1−α)∆I−τε depending on the sign of K(α)−Kτε and payout (1−α)∆Zτε as dividends leads
to (Xτε , Kτε) and therefore,

V ∗(X(α), K(α))− V ∗(Xτε , Kτε) ≥ (1− α)∆Zτε .

Using ϕ(X(α), K(α)) ≥ V ∗(X(α), K(α)), we deduce

ϕ(Xτ−ε
, Kτ−ε

)− V ∗(Xτε , Kτε) ≥ (1 + αη)∆Zτε + αη(∆I+
τε + ∆I−τε).

Hence,

V ∗(x̄, k̄) ≥ η
(
E

[∫ τ−ε

0

e−rudu

]
+ E

[∫ τ−ε

0

e−rudI+
u

]
+ E

[∫ τ−ε

0

e−rudI−u

]
+ E

[∫ τ−ε

0

e−rudZu

]
+ E[e−rτεα(∆Zτε + γ∆I+

τε + γ∆I−τε)]
)

+ E[e−rτεV ∗(Xτε , Kτε)] + E
[∫ τε

0

e−rudZu

]
(46)

We now claim there is c0 > 0 such that for any admissible strategy

c0 ≤ E

[∫ τ−ε

0

e−rudu+

∫ τ−ε

0

e−rudI+
u +

∫ τ−ε

0

e−rudI−u +

∫ τ−ε

0

e−rudZu

]
(47)

+ E
[
e−rτεα(∆Zτε + γ∆I+

τε + γ∆I−τε)
]

Let us consider the C2 function, φ(x, k) = c0[1− (x−x̄)2

ε2
] with,

0 < c0 ≤ min

{
ε

2
,
ε

2γ
,
1

r
,
ε2

σ2
nβ̄

2
,

ε

2dmax

}
where

dmax = sup

{
|β(k)µ− α((k − x)+)|

ε
, (x, k) ∈ Bε(x̄, k̄)

}
> 0,
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satisfies
φ(x̄, k̄) = c0

φ = 0, for (x, k) ∈ ∂Bε

min

{
1− Lφ, 1− γ ∂φ

∂x
+
∂φ

∂k
, 1− γ ∂φ

∂x
− ∂φ

∂k
, 1− ∂φ

∂x

}
≥ 0, pour (x, k) ∈ Bε.

Applying Itô’s formula, we have

0 < c0 = φ(x̄, k̄) ≤ E[e−rτ
−
ε φ(Xτ−ε

, Kτ−ε
)] + E

[∫ τε−

0

e−rudu

]

+ E

[∫ τ−ε

0

e−rudI+
u

]
+ E

[∫ τ−ε

0

e−rudI−u

]
+ E

[∫ τ−ε

0

e−rudZu

]
(48)

Noting that ∂φ
∂x
≤ 1 and ∂φ

∂k
= 0, we have

φ(Xτ−ε
, Kτ−ε

)− φ(X(α), K(α)) ≤ (Xτ−ε
−X(α)) = α(∆Zτε + γ∆I+

τε + γ∆I−τε).

Plugging into (48) with φ(X(α), K(α)) = 0, we obtain

c0 ≤ E

[∫ τ−ε

0

e−rudu+

∫ τ−ε

0

e−rudI+
u +

∫ τ−ε

0

e−rudI−u +

∫ τ−ε

0

e−rudZu

]
+ E

[
e−rτεα(∆Zτε + γ∆I+

τε + γ∆I−τε)
]

This proves the claim (47). Finally, by taking the supremum over π and using the dynamic
programming principle, (46) implies V ∗(x̄, k̄) ≥ V ∗(x̄, k̄) + ηc0, which is a contradiction.

Uniqueness Suppose u is a continuous subsolution and w a continuous supersolution of
(20) on S satisfying the boundary conditions

u(x, 0) ≤ w(x, 0) u(γk, k) ≤ w(γk, k) for (x, k) ∈ S,

and the linear growth condition

|u(x, k)|+ |w(x, k)| ≤ C1 + C2(x+ k) ∀(x, k) ∈ S,

for some positive constants C1 and C2. We will show by adapting some standard arguments
that u ≤ w.

Step 1: We first construct strict supersolution of (20) with pertubation of w. Set

h(x, k) = A+Bx+ Ck +Dxk + Ex2 + k2

with

A =
1 + µβ̄B + σ2β̄2E

r
+ C1 (49)
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and 
B = 2 + 1+C

γ
+ 2µβ̄E

r

C = µβ̄D
r

D = 2γE
E = 1

γ2

and define for λ ∈ [0, 1] the continuous function on S

wλ = (1− λ)w + λh.

Because 

∂h

∂x
− 1 = B +Dk + 2Ex− 1 ≥ 1

γ
∂h

∂x
− ∂h

∂k
= γ(B +Dk + 2Ex)− (C +Dx+ 2k) ≥ 1

γ
∂h

∂x
+
∂h

∂k
= γ(B +Dk + 2Ex) + (C +Dx+ 2k) ≥ 1

and

−Lh = −(β(k)µ− α((k − x)+))(B +Dk + 2Ex)− σ2β(k)2

2
2E + r(A+Bx+ Ck +Dxk + Ex2 + k2)

≥ (rA− β(k)µB − σ2β(k)2E) + (rB − 2µβ(k)E)x+ (rC − µβ(k)D)k

≥ 1.

we have that

min

{
−Lh, ∂h

∂x
− 1, γ

∂h

∂x
− ∂h

∂k
, γ
∂h

∂x
+
∂h

∂k

}
≥ 1.

which implies that wλ is a strict supersolution of (20). To prove this point, one only
needs to take x̄ and ϕ ∈ C2 such that x̄ is a minimum of wλ − ϕ and notice that x̄ is
also a minimum of wλ−ϕ2 with ϕ2 = ϕ−λh

1−λ which allows us to use that w is a viscosity
supersolution of (20).

Step 2: In order to prove the strong comparison result, it suffice to show that for every λ ∈ [0, 1]

sup
S

(u− wλ) ≤ 0.

Assume by a way of contradiction that there exists λ such that

sup
S

(u− wλ) > 0. (50)

Because u and w have linear growth, we have lim
||(x,k)||→+∞

(u− wλ) = −∞.

Using the boundary conditions

u(x, 0)− wλ(x, 0) = (1− λ)(u(x, 0)− w(x, 0)) + λ(u(x, 0)− (A+Bx+ Ex2)),

≤ λ(u(x, 0)− (A+Bx+ Ex2)),

u(γk, k)− wλ(γk, k) ≤ λ(u(γk, k)− (A+ (Bγ + C)k + (Dγ + Eγ2 + 1)k2)),

and the linear growth condition, it is always possible to find C1 in Equation (49) such
that both expressions above are negative and maximum in Equation (50) is reached
inside the domain S.
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By continuity of the functions u and wλ, there exists a pair (x0, k0) with x0 ≥ γk0 such that

M = sup
S

(u− wλ) = (u− wλ)(x0, k0).

For ε > 0, let us consider the functions

Φε(x, y, k, l) = u(x, k)− wλ(y, l)− φε(x, y, k, l)

φε(x, y, k, l) =
1

2ε
(|x− y|2 + |k − l|2) +

1

4
(|x− x0|4 + |k − k0|4).

By standard arguments in comparison principle of the viscosity solution theory (see Pham
[25] section 4.4.2.), the function Φε attains a maximum in (xε, yε, kε, lε), which converges (up
to a subsequence) to (x0, k0, x0, k0) when ε goes to zero. Moreover,

lim
ε→+∞

(|xε − yε|2 + |kε − lε|2)

2ε
→ 0 (51)

Applying Theorem 3.2 in Crandall Ishii Lions [6] , we get the existence of symmetric square
matrices of size 2 Mε, Nε such that:

(pε,Mε) ∈ J2,+u(xε, kε),

(qε, Nε) ∈ J2,−wλ(yε, lε),

and (
Mε 0
0 −Nε

)
≤ D2φε(xε, kε, yε, lε) + ε(D2φε(xε, kε, yε, lε))

2, (52)

where

pε = Dx,kφε(xε, kε, yε, lε) =

(
(xε − yε)

ε
+ (xε − x0)3,

(kε − lε)
ε

+ (kε − k0)3

)
,

qε = −Dy,lφε(xε, kε, yε, lε) =

(
(xε − yε)

ε
,
(kε − lε)

ε

)
.

and

D2φε(xε, kε, yε, lε) =
1

ε

(
I2 −I2

−I2 I2

)
+


3(xε − x0)2 0 0 0

0 3(kε − k0)2 0 0
0 0 0 0
0 0 0 0

 (53)

so

D2φε(xε, kε, yε, lε) + ε(D2φε(xε, yε, kε, lε))
2 =

3

ε

(
I2 −I2

−I2 I2

)
Mε

+


9(xε − x0)2(1 + ε(xε − x0)2) 0 0 0

0 9(kε − k0)2(1 + ε(kε − k0)2) 0 0
0 0 0 0
0 0 0 0
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Equation (52) implies

tr

(
σ2β(kε)

2

2
Mε −

σ2β(lε)
2

2
Nε

)
≤3σ2

2ε
(β(kε)

2 − β(lε)
2)

+
9σ2β(kε)

2

2
(xε − x0)2(1 + ε(xε − x0)2)

(54)

Because u and wλ are respectively subsolution and strict supersolution, we have

min
[
−
(
β(kε)µ− α((kε − xε)+)

)(xε − yε
ε

+ (xε − x0)3
)
− tr(

σ2β(kε)
2

2
Mε) + ru(xε, kε),

xε − yε
ε

+ (xε − x0)3 − 1,

γ
(xε − yε

ε
+ (xε − x0)3

)
−
(kε − lε

ε
+ (kε − k0)3

)
,

γ
(xε − yε

ε
+ (xε − x0)3

)
+
(kε − lε

ε
+ (kε − k0)3

)]
≤ 0

(55)

and

min
(
−
(
β(lε)µ− α((lε − yε)+)

)xε − yε
ε
− tr(

σ2β(lε)
2

2
Nε) + rwλ(yε, lε),

xε − yε
ε
− 1, γ

xε − yε
ε
− kε − lε

ε
, γ
xε − yε
ε

+
kε − lε
ε

)
≥ λ.

(56)

We then distinguish the following four cases:

• Case 1. If xε−yε
ε

+ (xε−x0)3− 1 ≤ 0 then we get from (56), λ+ (xε−x0)3 ≤ 0 yielding
a contradiction when ε goes to 0.

• Case 2. If γ
(
xε−yε
ε

+ (xε − x0)3
)
−
(
kε−lε
ε

+ (kε − k0)3
)
≤ 0 then we get from (56)

λ+ γ
(

(xε − x0)3 − (kε − k0)3
)
≤ 0 yielding a contradiction when ε goes to 0.

• Case 3. If γ
(
xε−yε
ε

+ (xε − x0)3
)

+
(
kε−lε
ε

+ (kε − k0)3
)
≤ 0, then we get from (56)

λ+ γ
(

(xε − x0)3 + (kε − k0)3
)
≤ 0 yielding a contradiction when ε goes to 0.

• Case 4. If

−
(
β(kε)µ− α((kε − xε)+)

)(xε − yε
ε

+ (xε − x0)3
)
− tr(

σ2β(kε)
2

2
Mε) + ru(xε, kε) ≤ 0.

From

−
(
β(lε)µ− α((lε − yε)+)

)xε − yε
ε
− tr(

σ2β(lε)
2

2
Nε) + rwλ(yε, lε) ≥ λ
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we deduce

xε − yε
ε

(
µ(β(lε)− β(kε)) + α((kε − xε)+)− α((lε − yε)+)

)
−tr(

σ2β(kε)
2

2
Nε) + tr(

σ2β(kε)
2

2
Nε)

−
(
β(kε)µ− α((kε − xε)+)

)
(xε − x0)3

+r(u(xε, kε)− wλ(yε, lε)) ≤ −λ.

Using (54) we get,

xε − yε
ε

(
µ(β(lε)− β(kε)) + α((kε − xε)+)− α((lε − yε)+)

)
−
(
β(kε)µ− α((kε − xε)+)

)
(xε − x0)3 + r(u(xε, kε)− wλ(yε, lε))

≤ −λ+
3σ2

2ε
(β(kε)

2 − β(lε)
2) +

9σ2β(kε)
2

2
(xε − x0)2(1 + ε(xε − x0)2).

By sending ε to zero and using the continuity of u, wγi , α and β we obtain the required
contradiction: rM ≤ −λ.

This ends the proof.

6.2 Proof of the Proposition 7

Because β is concave and β′ goes to 0 , the existence of a is equivalent to assume

σ2β′(0) ≥ µ

(1− δ)
. (57)

Let us define the function wA for A > 0 as the unique solution on (a,+∞) of the Cauchy
problem

µβ(x)w′A(x) +
σ2β(x)2

2
w′′A(x)− rwA(x) = 0

with wA(x) = Axδ for 0 ≤ x ≤ a and wA differentiable at a.

Remark 3 The Cauchy problem is well defined with the condition wA differentiable at a.
Moreover, it is easy to check, using the definition of a, that the function wA is also C2.
Because the cost of debt α is high, the shareholders optimally choose not to issue debt but
rather adjust costlessly their level of investment.

Lemma 14 For every A > 0 the function wA is increasing.

Proof: Clearly, wA is increasing and thus positive on [0, a]. Let c = min{x > a ,w′A(c) = 0}.
wA(c) > 0 because wA is increasing and positive in a left neighborhood of c. Thus, according
to the differential equation, we have w′′A(c) ≥ 0 which implies that wA is also increasing in
a right neighborhood of c. Therefore, w′A cannot become negative. �
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Lemma 15 For every A > 0, there is some bA such that w′′A(bA) = 0 and wA is a concave
function on ]a, bA[.

Proof: Assume by a way of contradiction that w′′A does not vanish. Using Equations (28)
and (27), we have

σ2β2(a)

2
w′′A(a) = −rAaδ.

Therefore, we equivalently assume that w′′A < 0. This implies that w′A is stricly decreasing
and bounded below by 0 by lemma 14 therefore wA is an increasing concave function. There-
fore, lim

x→+∞
w′A(x) exists and is denoted by l. Letting x → +∞ in the differential equation,

we obtain, because β has a finite limit,

σ2β̄2

2
lim
x→∞

w′′A(x) = r lim
x→∞

wA(x)− µβ̄l.

Therefore, either limx→∞wA(x) is +∞ from which we get a contradiction or finite from
which we get lim

x→+∞
w′′A(x) = 0 by mean value theorem. In the second case, differentiating

the differential equation, we have

µβ′(x)w′A(x) + µβ(x)w′′A(x) + σ2β′(x)β(x)w′′A(x) +
σ2β(x)2

2
w′′′A (x)− rw′A(x) = 0 (58)

Proceeding analogously, we obtain that lim
x→+∞

w′′′A (x) = 0 and thus l = 0. Coming back to

the differential equation, we get
0 = r lim

x→∞
wA(x)

which contradicts that wA is increasing. Now, define bA = inf{x ≥ a, w′′A(x) = 0} to
conclude. �

Lemma 16 There exists A∗ such that w′A∗(bA∗) = 1.

Proof: For every A > 0, we have

µβ(bA)w′A(bA) = rwA(bA). (59)

Let A1 = µβ̄
raδ

. Lemma 14 yields

wA1(bA1) ≥ wA1(a)

=
µβ̄

r

≥ µβ(bA1)

r

Therefore, Equation (59) yields w′A1
(bA1) ≥ 1.

On the other hand, let A2 = a1−δ

δ
. By construction, w′A2

(a) = 1 and thus w′A2
(bA2) ≤ 1 by

concavity of wA on (0, bA). Thus, there is some A∗ ∈ [min(A1, A2),max(A1, A2)] such that
w′A∗ = 1. �
Hereafter, we denote b = bA∗ .
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Lemma 17 We have µβ′(b) ≤ r.

Proof: Differentiating the differential equation and plugging x = b, we get

σ2β(b)2

2
w′′′A (b) + µβ′(b)− r = 0

Because w′′A∗ is increasing in a left neighborhood of b, we have w′′′A (b) ≥ 0 implying the result.
�

Let us define

v =

{
wA∗(x) x ≤ b

x− b+ µβ(b)
r

x ≥ b

We are in a position to prove the following proposition

Proposition 8 The shareholders value is v.

Proof: We have to check that (v, b) satisfies the standard HJB free boundary problem. By
construction, v is a C2 concave function on (0,+∞) satisfying v′ ≥ 1. It remains to check
maxk Lkv(x) ≤ 0.
For x > b, we have

Lkv(x) = µβ(k)− α((k − x)+)− µβ(b)− r(x− b).

If k ≤ x, concavity of β and Lemma 17 implies

Lkv(x) = µ(β(x)− β(b))− r(x− b)
≤ (µβ′(b)− r)(x− b)
≤ 0.

If k ≥ x, we differentiate Lkv(x) with respect to k and obtain using again concavity of β
and convexity of α,

∂Lkv(x)

∂k
= µβ′(k)− α′(k − x) ≤ µβ′(0)− α′(0) ≤ 0.

Therefore, Lkv(x) ≤ Lxv(x) ≤ 0.
Let x < b, because v is concave, the same argument as in the previous lines shows that

∂Lkv(x)

∂k
≤ 0 for k ≥ x

and therefore
max
k≥0
Lkv(x) = max

k≤x
Lkv(x).

First order condition gives for 0 ≤ k < x

∂

∂k
(Lkv) = µβ′(k)v′(x) + σ2β′(k)β(k)v′′(x)

= β′(k)[µv′(x) + σ2β(k)v′′(x)].
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Thus for 0 < x < a, we have

∂

∂k
(Lkv) = β′(k)A∗xδ−2δ[µx+ σ2β(k)(δ − 1)]

which gives, 
∂

∂k
(L0v) > 0

∂

∂k
(Lxv) < 0.

Therefore the maximum k∗(x) of Lkv(x) lies in the interior of the interval [0, x] and satisfies:

∀0 < x < a, β(k∗(x)) =
µx

σ2(1− δ)
.

Hence, for x ≤ a, we have by construction

max
0≤k≤x

{Lkv} =
µ2x

σ2(1− δ)
A∗δxδ−1 +

σ2µ2x2

2σ4(1− δ)2
A∗δ(δ − 1)xδ−2 − rA∗xδ

= 0.

Now, fix x ∈ (a, b). We note that
∂

∂k
(Lkv) has the same sign as µv′(x)+σ2β(k)v′′(x) because

β is strictly increasing. Moreover, because v is concave and β increasing, we have

min
0≤k≤x

µv′(x) + σ2β(k)v′′(x) = µv′(x) + σ2β(x)v′′(x).

Thus, it suffice to prove µv′(x) + σ2β(x)v′′(x) ≥ 0 for x ∈ (a, b) or equivalently because β is
a positive function that the function φ defined as

φ(x) = µβ(x)v′(x) + σ2β(x)2v′′(x)

is positive. We make a proof by contradiction assuming there is some x such that φ(x) < 0.
As φ(a) = 0 by Equation 27 and φ(b) > 0 then there is some x1 ∈ [a, b] such that{

φ(x1) < 0

φ′(x1) = 0.

Using the differential equation (58) satisfied by v′, we obtain

φ′(x1) = (2r − µβ′(x1))v′(x1)− µβ(x1)v′′(x1) = 0

from we deduce

φ(x1) = µβ(x1)v′(x1) + σ2β(x1)2v′′(x1)

= µβ(x1)v′(x1) +
σ2β(x1)

µ
(2r − µβ′(x1))v′(x1)

= β(x1)v′(x1)(µ+
2rσ2

µ
− σ2β′(x1)).
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But x1 ≥ a and thus β′(x1) ≤ β′(a). Moreover, by definition of a, we have σ2β′(a) ≤ µ
(1−δ) .

Therefore, Equation (28) yields

φ(x1) ≥ β(x1)v′(x1)

(
µ+

2rσ2

µ
− µ

1− δ

)
≥ β(x1)v′(x1)

(
2rσ2

µ
− µ δ

1− δ

)
≥ β(x1)v′(x1)

(
2rσ2

µ
− µ 2rσ2

µ2 + 2rσ2

µ2 + 2rσ2

µ2

)
= 0

which is a contradiction. �

To complete the characterization of the shareholders value when the cost of debt is high,
we have to study the optimal policy when (57) is not fulfilled. We expect that a = 0 in that
case which means that for all x, the manager should invest all the cash in productive assets.
Thus we are interested in the solutions to

µβ(x)w′(x) +
σ2β(x)2

2
w′′(x)− rw(x) = 0 (60)

such that w(0) = 0.

Proposition 9 Suppose that the functions x→ x
β(x)

and x→ x2

β(x)2
are analytic in 0 with a

radius of convergence R. The solutions w to Equation (60) such that w(0) = 0 are given by

w(x) =
∞∑
k=0

Akx
k+y1

with

∀k ≥ 1, Ak =
1

−I(k + y1)

k−1∑
j=0

(j + y1)p(k−j)(0) + q(k−j)(0)

(k − j)!
Aj

where the functions p and q are 
p(x) =

2µx

σ2β(x)

q(x) = − 2rx2

σ2β(x)2

the function I is given by

I(y) = µβ′(0)y +
σ2

2
β′(0)2y(y − 1)− r

and y1 is the positive root of I

y1 =
−µ+ σ2

2
β′(0) +

√
(µ− σ2

2
β′(0))2 + 2rσ2

σ2β′(0)
.

The radius of convergence of w is at least equal to R.
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Proof: This result is given by the Fuchs’ theorem [23]. �
Note that the solutions of Equation (60) vanishing at zero can be written

wA0(x) = A0w1(x).

If the radius of convergence of the Frobenius series is finite, then the previously defined
function w1 can be extended by use of the Cauchy theorem.

Because µβ′(0) ≥ r, we have y1 < 1. As a consequence, we have

lim
x→0

w′1(x) = +∞ and lim
x→0

w′′1(x) = −∞

Thus, proceeding analogously as in Lemma 15, we prove the existence of b such that w′′1(b) =
0. Because wA0 is linear in A0, we choose A0 = A∗ = 1

w′1(b)
to get a concave solution w∗ to

(60) with w∗(0) = 0, (w∗)′(b) = 1 and (w∗)′′(b) = 0. We extend w∗ linearly on (b,+∞) as
usual to obtain a C2 function on [0,+∞[.

Proposition 10 The shareholders value is w∗.

Proof: It suffices to check that w∗ satisfies the free boundary problem. By construction
w∗ is a C2 concave function on R+∗. Because (w∗)′(b) = 1, we have

∀x ∈]0, b], (w∗)′(x) ≥ 1

and
∀x ≥ b, (w∗)′(x) = 1.

On [b,+∞[, we have

max
k≥0
{Lkw∗} = max

k≥0

[
µβ(k)− α((k − x)+)− µβ(b) + r(b− x)

]
= max

[
max
k≤x

µβ(k)− µβ(b) + r(b− x),

max
k≥x

µβ(k)− α(k − x)− µβ(b) + r(b− x)
]
.

Using β concave increasing, α convexe, α′(0+) > µβ′(0+), we have

max
k≥0
{Lkw∗} = µβ(x)− µβ(b) + r(b− x).

Then using the concavity of β,

∀x ≥ b,max
k≥0
{Lkw∗} ≤ 0.

It remains to show that for every x < b

max
k≥0
{Lkw∗} = 0.
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Using β concave , α convex, α′(0) > µβ′(0) and w∗ concave increasing, we have

∀k > x,
∂

∂k
(Lkw∗) = (µβ′(k)− α′(k − x))(w∗)′(x) + σ2β′(k)β(k)(w∗)′′(x) ≤ 0.

Thus,
max
k≥0
{Lk(w∗)} = max

0≤k≤x
{Lk(w∗)}.

Moreover,

∀0 < k < x,
∂

∂k
(Lk(w∗)) = µβ′(k)(w∗)′(x) + σ2β′(k)β(k)(w∗)′′(x)

= β′(k)[µ(w∗)′(x) + σ2β(k)(w∗)′′(x)].

We expect

∀x ∈]0, b],∀k ≤ x,
∂

∂k
(Lk(w∗)) ≥ 0.

Notice that β′(k) ≥ 0 and

min
0≤k≤x

µ(w∗)′(x) + σ2β(k)(w∗)′′(x) = µ(w∗)′(x) + σ2β(x)(w∗)′′(x)

because (w∗)′′(x) ≤ 0 and β is increasing. Thus it is enough to prove for every x < b,

µ(w∗)′(x) + σ2β(x)(w∗)′′(x) ≥ 0

or equivalently, using β ≥ 0,

φ(x) = µβ(x)(w∗)′(x) + σ2β(x)2(w∗)′′(x) ≥ 0

for x < b. We make a proof by contradiction assuming the existence of x such that
φ(x) < 0. In a neighborhood of 0, we have

(w∗)′(x) ∼ A∗y1x
y1−1

and
(w∗)′′(x) ∼ A∗y1(y1 − 1)xy1−2

From which we deduce because β(x)xy1−1 ≤ β′(0)xy1 ,

lim
x→0

β(x)(w∗)′(x) = 0

lim
x→0

β(x)2(w∗)′′(x) = 0

yielding
lim
x→0

φ(x) = 0.

But φ(b) > 0 thus there is x1 ∈]0, b[ such that{
φ(x1) < 0

φ′(x1) = 0.
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Using the derivative of Equation (60)

φ′(x1) = (2r − µβ′(x1))(w∗)′(x1)− µβ(x1)(w∗)′′(x1) = 0

from which we deduce :

φ(x1) = µβ(x1)(w∗)′(x1) + σ2β(x1)2(w∗)′′(x1)

= µβ(x1)(w∗)′(x1) +
σ2β(x1)

µ
(2r − µβ′(x1))(w∗)′(x1)

= β(x1)(w∗)′(x1)(µ+
2rσ2

µ
− σ2β′(x1)).

Now, remember that x1 > 0 and thus using the concavity of β, we have β′(x1) ≤ β′(0).

Furthermore, β′(0) ≤ µ2+2rσ2

σ2µ
when Equation (27) is not fulfilled. Hence,

φ(x1) ≥ β(x1)(w∗)′(x1)

(
µ+

2rσ2

µ
− µ2 + 2rσ2

µ

)
≥ 0

which yields to a contradiction and ends the proof. �
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