Optimal investment under relative performance concerns

GE.Espinosa
Joint work with N.Touzi

May 6th, 2009
Classical portfolio optimization: maximization of one’s utility with respect to one’s personal wealth or consumption

Economical literature: relative wealth concerns
Classical portfolio optimization: maximization of one’s utility with respect to one’s personal wealth or consumption

Economical literature: relative wealth concerns

Aim: Try to derive a portfolio optimization theory with such relative wealth concerns.
The market:

- a non-risky asset with 0 interest rate
- a d-dimensional risky asset S
- N agents

σ is assumed to be symmetric definite.
The market:
- a non-risky asset with 0 interest rate
- a d-dimensional risky asset S
- N agents

The dynamics of S is given by:

$$dS_t = \text{diag}(S_t) \sigma_t (\theta_t dt + dW_t)$$
The market:
- a non-risky asset with 0 interest rate
- a \(d\)-dimensional risky asset \(S\)
- \(N\) agents

The dynamics of \(S\) is given by:

\[
dS_t = \text{diag}(S_t)\sigma_t(\theta_t dt + dW_t)
\]

\(\sigma\) is assumed to be symmetric definite.
The market:
- a non-risky asset with 0 interest rate
- a d-dimensional risky asset S
- N agents

The dynamics of S is given by:

$$dS_t = \text{diag}(S_t)\sigma_t(\theta_t dt + dW_t)$$

σ is assumed to be symmetric definite.

We will first assume that all agents are similar.
We write X^i the wealth process of agent i and π^i the portfolio of agent i. Investment horizon T. Initial wealth x^i.
We write X^i the wealth process of agent i and π^i the portfolio of agent i. Investment horizon T. Initial wealth x^i.

Optimization criterion for agent i:
- exponential utility function with risk sensitivity parameter $\eta > 0$
- relative performance sensitivity parameter $\lambda \in [0, 1]$
- average wealth of other agents $\bar{X}^i = \frac{1}{N-1} \sum_{j \neq i} X^j$
Thus agent i wants to maximize upon admissible π^i:

$$-\mathbb{E}e^{-\eta[(1-\lambda)X^i_T + \lambda(X^i_T - \bar{X}^i_T)]]}$$

given other π^j ($j \neq i$)
By symmetry, at the equilibrium, it is the same as:

$$\sup_{\pi^i} -\mathbb{E}e^{-\eta(1-\lambda)X^i_T}$$
By symmetry, at the equilibrium, it is the same as:

$$\sup_{\pi^i} -\mathbb{E}e^{-\eta(1-\lambda)X_T^i}$$

Same as in the classical case but $\eta \to \eta(1 - \lambda)$
By symmetry, at the equilibrium, it is the same as:

$$\sup_{\pi^i} -\mathbb{E} e^{-\eta(1-\lambda)X_T^i}$$

Same as in the classical case but $\eta \rightarrow \eta(1 - \lambda)$

So the optimal portfolio is (for deterministic θ, $\lambda < 1$):

$$\hat{\pi}_t^i = \frac{1}{\eta(1 - \lambda)} \sigma_t^{-1} \theta_t$$
- $|\hat{\pi}^i|$ is increasing in λ
- if $\lambda \to 1$, $|\hat{\pi}^i| \to \infty$ a.s.
- $|\hat{\pi}^i|$ is increasing in λ
- if $\lambda \to 1$, $|\hat{\pi}^i| \to \infty$ a.s.

Define the market index:

\[
\bar{X}_T = \frac{1}{N} \sum_{i=1}^{N} X^i_T
\]
- $|\hat{\pi}^i|$ is increasing in λ
- if $\lambda \to 1$, $|\hat{\pi}^i| \to \infty$ a.s.

Define the market index:

$$\bar{X}_T = \frac{1}{N} \sum_{i=1}^{N} X^i_T$$

At the equilibrium, its dynamics is given by:

$$d\bar{X}_t = \frac{1}{\eta(1 - \lambda)}[|\theta_t|^2 dt + \theta_t.dW_t]$$
Specific parameters:
- risk sensitivity parameter $\eta_i > 0$
- relative performance sensitivity parameter $\lambda_i \in [0, 1]$

Thus agent i wants to maximize upon admissible π_i:

$$-\mathbb{E}e^{-\eta_i[(1-\lambda_i)X^i_T+\lambda_i(X^i_T-\bar{X}^i_T)]}$$

given other π^j ($j \neq i$)
Specific parameters:
- risk sensitivity parameter $\eta_i > 0$
- relative performance sensitivity parameter $\lambda_i \in [0, 1]$
Thus agent i wants to maximize upon admissible π^i:

$$-\mathbb{E}e^{-\eta_i[X^i_T - \lambda_i \bar{X}^i_T]}$$

given other $\pi^j \ (j \neq i)$
Portfolio constraints:

Each agent has an area of investment. \(\pi^i \) must stay in a certain \(A_i \) that will be assumed to be a vector sub-space of \(\mathbb{R}^d \).
Portfolio constraints:

Each agent has an area of investment. π^i must stay in a certain A_i that will be assumed to be a vector sub-space of \mathbb{R}^d.

So finally we are looking for:

$$\sup_{\pi^i \in A_i} -\mathbb{E}e^{-\eta_i[X^i_T, \pi^i] - \lambda_i \bar{X}^i_T}$$
Portfolio constraints:

Each agent has an area of investment. π^i must stay in a certain A_i that will be assumed to be a vector sub-space of \mathbb{R}^d.

So finally we are looking for:

$$\sup_{\pi^i \in A_i} -\mathbb{E} e^{-\eta_i [X^i_T, \pi^i - \lambda_i \bar{X}^i_T]}$$

And then look for Nash equilibria between the N agents.
Using a result by Hu-Imkeller-Muller for optimal investment in incomplete markets, we can relate the single agent optimization problem with the following (quadratic) BSDE:

\[dY_t^i = \left(\frac{|\theta_t|^2}{2\eta} - \frac{\eta}{2}|Z_t^i + \frac{\theta_t}{\eta} - P_{\sigma A_i}(Z_t^i + \frac{\theta_t}{\eta})|^2 \right) dt + Z_t^i dB_t \]

\[Y_T^i = \lambda(\bar{X}_T^i - \bar{x}_i) = \frac{\lambda}{N-1} \sum_{j \neq i} \int_0^T \pi^j_u \sigma_u dB_u \]
Using a result by Hu-Imkeller-Muller for optimal investment in incomplete markets, we can relate the single agent optimization problem with the following (quadratic) BSDE:

\[
\begin{align*}
 dY^i_t &= \left(\frac{|\theta_t|^2}{2\eta} - \frac{\eta}{2} |Z^i_t + \frac{\theta_t}{\eta} P_{\sigma_t A_i} (Z^i_t + \frac{\theta_t}{\eta})|^2 \right) dt + Z^i_t dB_t \\
 Y^i_T &= \lambda (\bar{X}^i_T - \bar{x}_i) = \frac{\lambda}{N-1} \sum_{j \neq i} \int_0^T \pi^j_u \sigma_u dB_u
\end{align*}
\]

And an optimal portfolio is given by:

\[
\sigma_t \hat{\pi}^i_t = P_{\sigma_t A_i} (Z^i_t + \frac{\theta_t}{\eta})
\]
Using a result by Hu-Imkeller-Muller for optimal investment in incomplete markets, we can relate the single agent optimization problem with the following (quadratic) BSDE:

\[dY_t^i = \left(\frac{|\theta_t|^2}{2\eta} - \frac{\eta}{2}|Z_t^i + \frac{\theta_t}{\eta} - P_{\sigma_t A_i}(Z_t^i + \frac{\theta_t}{\eta})|^2 \right) dt + Z_t^i dB_t \]

\[Y_T^i = \lambda (\bar{X}_T^i - \bar{x}_i) = \frac{\lambda}{N - 1} \sum_{j \neq i} \int_0^T \pi_u^j \cdot \sigma_u dB_u \]

And an optimal portfolio is given by:

\[\sigma_t \hat{\pi}_t^i = P_{\sigma_t A_i}(Z_t^i + \frac{\theta_t}{\eta}) \]

Remark: there is no need for \(S \) to be a Markov process.
Putting them together it brings:

$$Y_0^i = - \frac{1}{\eta} \ln \frac{d\mathbb{Q}}{d\mathbb{P}} + \frac{\eta}{2} \int_0^T |Q_t^i(Z_t^i)|^2 dt - \int_0^T (Z_t^i - \frac{\lambda}{N - 1} \sum_{j \neq i} P_t^j(Z_t^j)).dB_t$$

where P_i is the orthogonal projection on σA_i and $Q_i = I - P_i$, \mathbb{Q} is the martingale probability and B a Brownian motion under \mathbb{Q}.
After showing the regularity of the operator (under some assumptions), it can be rewritten as:

$$Y_0^i = -\frac{1}{\eta} \ln \frac{dQ}{dP} + \frac{\eta}{2} \int_0^T |Q_t^i([\psi_t(\zeta_t)]^i)|^2 dt - \int_0^T \zeta_t^i dB_t$$

where $Y \in \mathbb{R}^N$, $\zeta \in M_{N,d}(\mathbb{R})$ and $\psi \in GL(M_{N,d}(\mathbb{R}))$.
After showing the regularity of the operator (under some assumptions), it can be rewritten as:

$$Y_0^i = -\frac{1}{\eta} \ln \frac{dQ}{dP} + \frac{\eta}{2} \int_0^T |Q_t^i([\psi_t(\zeta_t)]^i)|^2 dt - \int_0^T \zeta_t^i dB_t$$

where $Y \in \mathbb{R}^N$, $\zeta \in M_{N,d}(\mathbb{R})$ and $\psi \in GL(M_{N,d}(\mathbb{R}))$.

→ N-dimensional system of coupled quadratic BSDEs.
Assume the following:

\[
\prod_{i=1}^{N} \lambda_i < 1 \quad \text{or} \quad \bigcap_{i=1}^{N} A_i = \{0\}
\]
Assume the following:

\[
\prod_{i=1}^{N} \lambda_i < 1 \quad \text{or} \quad \bigcap_{i=1}^{N} A_i = \{0\}
\]

Theorem: There exists a unique equilibrium and an optimal portfolio for agent \(i\) is given by:

\[
\pi^i = \frac{1}{\eta} \sigma^{-1} P_i \left([I - \frac{\lambda}{N-1}] \left(\sum_{j \neq i} P_j \right) \left(I + \frac{\lambda}{N-1} P_i \right)^{-1} \theta \right)
\]

\((P_i\) is the orthogonal projection on \(\sigma A_i)\)
In the simple case where d is fixed we have:

Theorem: Let d be fixed, and assume moreover that

$$\frac{1}{N} \sum_{i=1}^{N} P_i \rightarrow U \text{ in } \mathcal{L}(\mathbb{R}^d) \text{ with } \|\lambda U\| < 1.$$

Then $\pi^i_N \rightarrow \pi^i_\infty$ uniformly where:

$$\pi^i_\infty = \frac{1}{\eta} \sigma^{-1} P_i[(I - \lambda U)^{-1} \theta]$$
Once again the market index is:

$$\bar{X}_t^N = \frac{1}{N} \sum_{i=1}^{N} X_t^i$$

And we find:

$$d\bar{X}_t^\infty = \frac{1}{\eta} U(I - \lambda U)^{-1} \theta_t \cdot [\theta_t dt + dW_t]$$
Once again the market index is: \(\bar{X}_t^N = \frac{1}{N} \sum_{i=1}^{N} X_t^i \)
And we find:

\[
d\bar{X}_t^{\infty} = \frac{1}{\eta} U(I - \lambda U)^{-1} \theta_t \left[\theta_t dt + dW_t \right]
\]

Moreover, \(U(I - \lambda U)^{-1} \) is diagonalizable with eigenvalues

\[
0 < \frac{\mu_1}{1 - \lambda \mu_1} < \cdots < \frac{\mu_d}{1 - \lambda \mu_d} < 1
\]

and with the same orthonormal eigenvectors as \(U \) (independent of \(\lambda \)).
→ The risk (volatility) of the market increases with λ.
Each agent can invest in the whole market:

$$\forall i, \ A_i = \mathbb{R}^d$$
Each agent can invest in the whole market:

$$\forall i, \ A_i = \mathbb{R}^d$$

Under the assumption $\prod_{j=1}^{N} \lambda_j < 1$, there is a unique equilibrium.
First case: $\forall i$, $\lambda_i = \lambda$, then:

$$\hat{\pi}_t^i = \left[\frac{N - 1}{N + \lambda - 1} + \frac{\lambda N}{(1 - \lambda)(N + \lambda - 1)} \frac{\eta_i}{\eta^N} \right] \pi_{t,0}^i$$

η^N is the harmonic average of the η^i.
As \(N \to \infty \), if \(\eta^N \to \eta > 0 \) then the equilibrium portfolio of agent \(i \) converges uniformly to:

\[
\hat{\pi}_{t,^\infty,i} = \left(1 + \frac{\lambda}{1 - \lambda \eta} \right) \pi_{t,^0,i}
\]
As $N \to \infty$, if $\eta^N \to \eta > 0$ then the equilibrium portfolio of agent i converges uniformly to:

$$\hat{\pi}_t^{\infty,i} = (1 + \frac{\lambda}{1 - \lambda} \frac{\eta_i}{\eta})\pi_0^{0,i}$$

Same conclusions as in the beginning.
Second case: $\forall j \neq i_0$, $\lambda_j = 1$, $\lambda_{i_0} < 1$ ($\forall i$, $\eta_i = \eta$), then:

$$\hat{\pi}_{i_0}^t = \left[\frac{1}{1 - \lambda_{i_0}} + \frac{\lambda_{i_0}(N - 1)}{1 - \lambda_{i_0}} \right] \pi_0^t$$

\rightarrow Impact of surrounding "stupidity".
Second case: $\forall j \neq i_0, \lambda_j = 1, \lambda_{i_0} < 1 \ (\forall i, \eta_i = \eta)$, then:

$$\hat{\pi}^{i_0}_t = \left[\frac{1}{1 - \lambda_{i_0}} + \frac{\lambda_{i_0}(N - 1)}{1 - \lambda_{i_0}}\right] \pi^0_t$$

As $N \to \infty$, even if $\lambda_{i_0} < 1$, $|\pi^i_t| \to \infty \ a.s \ (\text{except for } \lambda_{i_0} = 0)$.
Second case: $\forall j \neq i_0$, $\lambda_j = 1$, $\lambda_{i_0} < 1$ ($\forall i$, $\eta_i = \eta$), then:

$$\hat{\pi}_{i_0}^t = \left[\frac{1}{1 - \lambda_{i_0}} + \frac{\lambda_{i_0} (N - 1)}{1 - \lambda_{i_0}} \right] \pi_0^t$$

As $N \to \infty$, even if $\lambda_{i_0} < 1$, $|\pi_{i_0}^t| \to \infty$ a.s (except for $\lambda_{i_0} = 0$).

\rightarrow Impact of surrounding "stupidity".
- $d = N, A_i = \mathbb{R}e_i$
- $d = N$, $A_i = \mathbb{R}e_i$

- $\sigma^2 = \sigma^2 \begin{pmatrix} 1 & \rho^2 \\ \rho^2 & 1 \end{pmatrix}$ with $\rho \in (-1, 1)$ and $\sigma > 0$
\begin{itemize}
 \item $d = \mathbb{N}$, $A_i = \mathbb{R} e_i$
 \item $\sigma^2 = \sigma^2 \begin{pmatrix} 1 & \rho^2 \\ \rho^2 & 1 \end{pmatrix}$ with $\rho \in (-1, 1)$ and $\sigma > 0$
 \item we also assume $\forall i$, $\theta_i = \theta$.
\end{itemize}
As $N \to \infty$ we find:

\[
\hat{\pi}_i = \frac{\theta}{\eta \sigma \frac{1}{1 - \lambda \rho^2}} e_i
\]

So:

- the more you look at other agents (λ close to 1)
- the more correlated the assets are (ρ close to 1)
- the more risk you take.

For independent investments ($\rho = 0$), we find the classical optimal portfolio: no impact of λ.

GE.Espinosa Joint work with N.Touzi
Optimal investment under relative performance concerns
As $N \to \infty$ we find:

$$\hat{\pi}^i = \frac{\theta}{\eta \sigma} \frac{1}{1 - \lambda \rho^2} e_i$$

So:
- the more you look at other agents (λ close to 1)
- the more correlated the assets are (ρ^2 close to 1)

the more risk you take.
As $N \to \infty$ we find:

$$\hat{\pi}^i = \frac{\theta}{\eta \sigma} \frac{1}{1 - \lambda \rho^2} e_i$$

So:
- the more you look at other agents (λ close to 1)
- the more correlated the assets are (ρ^2 close to 1)

the more risk you take.

For independent investments ($\rho = 0$), we find the classical optimal portfolio: no impact of λ.
- Here again $d = N$. But $A_i = (\mathbb{R}e_i)^\perp$
- Here again \(d = N \). But \(A_i = (\mathbb{R}e_i)^\perp \)

\[
\begin{align*}
\sigma &= \sigma I & \forall i, \theta_i &= \theta.
\end{align*}
\]
We find:

$$\hat{\pi}_t^i = \frac{\theta}{\eta\sigma} \frac{1}{1 - \lambda + \frac{\lambda}{N-1}} \sum_{j \neq i} e_j$$

Same kind of conclusions as for investment on the whole market, but smaller impact of λ, especially for small N.

GE.Espinosa Joint work with N.Touzi

Optimal investment under relative performance concerns
We find:

$$\hat{\pi}_t^i = \frac{\theta}{\eta \sigma} \frac{1}{1 - \lambda + \frac{\lambda}{N-1}} \sum_{j \neq i} e_j$$

Same kind of conclusions as for investment on the whole market, but smaller impact of λ, especially for small N.
Short Bibliography

Special thanks to J. Lebuchoux - Reech Aim