Mean Field Game in Principal-Agent Problem

Zhenjie Ren

CEREMADE, Université Paris-Dauphine

Séminaire de FIME
February 22, 2019
Table of Contents

1 Introduction

2 Mean-Field Game in Principal-Agent Problem: Many Agents

3 Connection to Mean-Field Planning problem

4 PA Problem with Many Principals
Mean Field Games

In the study of economy, biology and finance, we are interested in the equilibrium among a large number of small players.
Mean Field Games

In the study of economy, biology and finance, we are interested in the equilibrium among a large number of small players.

- Players are identical to each other
Mean Field Games

In the study of economy, biology and finance, we are interested in the equilibrium among a large number of small players.

- Players are identical to each other
- Players’ decisions are only influenced by their own positions and the empirical distribution \(\mu_t^n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i} \) of the whole population

\[
\sup_a \mathbb{E} \left[\xi(X^a, \mu^n) - \int_0^T c(t, X^i_t, \mu^n_t, a^i_t) dt \right]
\]

where \(dX^i_t = b(t, X^i_t, \mu^n_t, a^i_t) dt + \sigma(t, X^i_t, \mu^n_t, a^i_t) dW^i_t \)

- A single player’s movement has no impact on the empirical law
Mean Field Games

In the study of economy, biology and finance, we are interested in the equilibrium among a large number of small players.

- Players are identical to each other
- Players’ decisions are only influenced by their own positions and the empirical distribution \(\mu_t^n = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i(t)} \) of the whole population

\[
\sup_{a_t} \mathbb{E} \left[\xi(X^a, p) - \int_0^T c(t, X^a_t, p_t, a_t) dt \right]
\]

where \(dX^a_t = b(t, X^a_t, p_t, a_t) dt + \sigma(t, X^a_t, p_t, a_t) dW_t \)

- A single player’s movement has no impact on the empirical law
- As \(n \to \infty \), the empirical law converges to the marginal law

\[
\mu^n_t \to \mathcal{L}(X_t) =: p_t
\]
Mean Field Games

In the study of economy, biology and finance, we are interested in the equilibrium among a large number of small players.

- Players are identical to each other
- Players’ decisions are only influenced by their own positions and the empirical distribution \(\mu^n_t = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i^t} \) of the whole population

\[
\sup_{a_t} \mathbb{E} \left[\xi(X^a_t, p) - \int_0^T c(t, X^a_t, p_t, a_t) dt \right]
\]

where \(dX^a_t = a_t dt + dW_t \)

- A single player’s movement has no impact on the empirical law
- As \(n \to \infty \), the empirical law converges to the marginal law

\[
\mu^n_t \to \mathcal{L}(X_t) =: p_t
\]
What is Mean Field Equilibrium?

A deterministic measure flow \((p_t)_{t \leq T}\) is a MFE if

\[
\begin{align*}
 a^* &= \arg\max_a \mathbb{E}\left[\xi(X^a, p) - \int_0^T c(t, X^a_t, p_t, a_t) dt \right] \\
 p_t &= \mathcal{L}(X^{a^*}_t)
\end{align*}
\]
What is Mean Field Equilibrium?

A deterministic measure flow \((p_t)_{t \leq T}\) is a MFE if

\[
\begin{cases}
 a^* = \arg\max_a \mathbb{E}\left[\xi(X^a, p) - \int_0^T c(t, X^a_t, p_t, a_t) dt \right] \\
p_t = \mathcal{L}(X^a_t)
\end{cases}
\]

The MFE can be characterized as a fixed point of a PDE system or of a probabilistic model. For example, Carmona and Lacker (15’) identified it as the solution of

\[
\begin{cases}
 dY_t = -H(t, W_t, Z_t, p_t) dt + Z_t dW_t, & Y_T = \xi(W, p) \\
 a^*_t(W) = \nabla_z H(t, W_t, Z_t, p_t) \\
p_t = \mathcal{L}(X^a_t)
\end{cases}
\]

where \(H(t, x, z, p) = \max_{a \in \mathbb{R}} \{az - c(t, x, p, a)\}\).
Principal-Agent Problem with Moral Hazard

Optimal contracting between two parties, when Agent’s effort cannot be observed, is a classical problem in Microeconomics, so-called Principal-Agent problem with moral hazard. It has applications in many areas of economics and finance, for example in corporate governance, portfolio management and energy transition.
Principal-Agent Problem with Moral Hazard

Optimal contracting between two parties, when Agent’s effort cannot be observed, is a classical problem in Microeconomics, so-called Principal-Agent problem with moral hazard. It has applications in many areas of economics and finance, for example in corporate governance, portfolio management and energy transition.

The optimizations of the two parties are coupled through the contract ξ:

Agent solves

$$V_0^A = \max_a \mathbb{E} \left[U \left(\xi(X^a) - \int_0^T c(t, X^a_t, a_t) dt \right) \right]$$

where

$$dX^a_t = a_t dt + dW_t$$

Principal solves

$$V_0^P = \max_{\xi} \mathbb{E} \left[\tilde{U} \left(X^{a*}, \xi(X^{a*}) \right) \right]$$
Principal-Agent Problem with Moral Hazard

Optimal contracting between two parties, when Agent’s effort cannot be observed, is a classical problem in Microeconomics, so-called Principal-Agent problem with moral hazard. It has applications in many areas of economics and finance, for example in corporate governance, portfolio management and energy transition.

The optimizations of the two parties are coupled through the contract ξ:

Agent solves

$$V_0^A = \max_a \mathbb{E} \left[U \left(\xi(X^a) - \int_0^T c(t, X^a_t, a_t) dt \right) \right]$$

where

$$dX^a_t = a_t dt + dW_t$$

Principal solves

$$V_0^P = \max_{\xi} \mathbb{E} \left[\tilde{U} \left(X^{a^*}, \xi(X^{a^*}) \right) \right]$$

Mechanism: Principal plays first (giving ξ) and then Agent follows (responding by a^*). Though Principal CANNOT observe a, she CAN predict Agent’s optimal rational response $a^*(\xi)$.

Zhenjie Ren (CEREMADE)

MFG in PA

Paris, 22/02/2019
Dynamic programming approach to the PA problem

Assume Agent is risk-neutral, i.e. $U = I$. Agent’s value function V^A and his best response a^* can be represented by the solution to the BSDE:

$$dY_t = -H(t, W_t, Z_t)dt + Z_t dW_t, \quad Y_T = \xi(W)$$

$$a^*_t(\xi) = \nabla_z H(t, W_t, Z_t)$$

where $H(t, x, z) = \max_{a \in \mathbb{R}} \{az - c(t, x, a)\}$.
Dynamic programming approach to the PA problem

Assume Agent is risk-neutral, i.e. $U = I$. Agent’s value function V^A and his best response a^* can be represented by the solution to the BSDE:

$$
dY_t = -H(t, W_t, Z_t)dt + Z_t dW_t, \quad Y_T = \xi(W)$$

$$a^*_t(\xi) = \nabla_z H(t, W_t, Z_t)$$

where $H(t, x, z) = \max_{a \in \mathbb{R}} \{az - c(t, x, a)\}$. Indeed, if we consider the contracts in the form:

$$\xi \in \Xi := \left\{ Y_T = Y_0 - \int_0^T H(t, W_t, Z_t)dt + Z_t dW_t : \ Y_0 \in \mathbb{R}, Z \in \text{BMO}_2 \right\},$$

the best response of Agent will be $a^*_t = \nabla_z H(t, W_t, Z_t)$.
Dynamic programming approach to the PA problem

Assume Agent is risk-neutral, i.e., $U = I$. Agent’s value function V^A and his best response a^* can be represented by the solution to the BSDE:

$$dY_t = -H(t, W_t, Z_t)dt + Z_t dW_t, \quad Y_T = \xi(W)$$

$$a^*_t(\xi) = \nabla_z H(t, W_t, Z_t)$$

where $H(t, x, z) = \max_{a \in \mathbb{R}} \{az - c(t, x, a)\}$. Indeed, if we consider the contracts in the form:

$$\xi \in \Xi := \left\{ Y_T = Y_0 - \int_0^T H(t, W_t, Z_t)dt + Z_t dW_t : Y_0 \in \mathbb{R}, Z \in BMO_2 \right\},$$

the best response of Agent will be $a^*_t = \nabla_z H(t, W_t, Z_t)$. Therefore, we can use (Y_0, Z) to represent both ξ and $a^*(\xi)$.
Principal’s optimization

Given the previous representation, we have

\[V^P_0 = \sup_{\xi \in \Xi} \mathbb{E} \left[\tilde{U} \left(X^{a*}, \xi(X^{a*}) \right) \right] \]
Principal’s optimization

Given the previous representation, we have

\[
V_0^P = \sup_{\xi \in \Xi} \mathbb{E} \left[\tilde{U} \left(X^{a^*}, \xi(X^{a^*}) \right) \right]
\]

\[
= \sup_{Y_0 \in \mathbb{R}, Z \in \text{BMO}_2} \mathbb{E} \left[\tilde{U} \left(X^{a^*}, Y_T \right) \right], \text{ with } a_t^* = \nabla_z H(t, W_t, Z_t)
\]
Given the previous representation, we have

\[V_0^P = \sup_{\xi \in \Xi} \mathbb{E} \left[\tilde{U} \left(X^{a^*}, \xi(X^{a^*}) \right) \right] \]

\[= \sup_{Y_0 \in \mathbb{R}, Z \in \text{BMO}_2} \mathbb{E} \left[\tilde{U} \left(X^{a^*}, Y_T \right) \right], \text{ with } a^*_t = \nabla_z H(t, W_t, Z_t) \]

It becomes a classical stochastic control problem where \(Z \) is the control process.
Principal’s optimization

Given the previous representation, we have

\[V^P_0 = \sup_{\xi \in \Xi} \mathbb{E} \left[\tilde{U} \left(X^{a^*}, \xi(X^{a^*}) \right) \right] \]

\[= \sup_{Y_0 \in \mathbb{R}, Z \in \text{BMO}_2} \mathbb{E} \left[\tilde{U} \left(X^{a^*}, Y_T \right) \right], \text{ with } a^*_t = \nabla_z H(t, W_t, Z_t) \]

It becomes a **classical stochastic control problem** where \(Z \) is the control process.

This approach was pioneered by Sannikov (07’) and Cvitanić, Possamaï & Touzi (15’).
Table of Contents

1. Introduction
2. Mean-Field Game in Principal-Agent Problem: Many Agents
3. Connection to Mean-Field Planning problem
4. PA Problem with Many Principals
Instead of consider problem involving one Agent, we may consider PA problem with many (infinite) Agents among whom there is mean-field interaction.
Instead of consider problem involving one Agent, we may consider PA problem with many (infinite) Agents among whom there is mean-field interaction.

Agent solves

\[V^A_0 = \max_a \mathbb{E} \left[U \left(\xi(X^a, p) - \int_0^T c(t, X^a_t, p_t, a_t) \, dt \right) \right] \]

where

\[dX^a_t = a_t \, dt + dW_t \]

at MFE we have

\[p_t = \mathcal{L}(X^a_t^*) \]
MFG in PA problem

Instead of consider problem involving one Agent, we may consider PA problem with many (infinite) Agents among whom there is mean-field interaction.

Agent solves

$$V_0^A = \max_a \mathbb{E}\left[U\left(\xi(X^a, p) - \int_0^T c(t, X^a_t, p_t, a_t)dt\right)\right]$$

where

$$dX^a_t = a_t dt + dW_t$$

at MFE we have

$$p_t = \mathcal{L}(X^a_t^*)$$

Principal solves

$$V_0^P = \max_\xi \mathbb{E}\left[\tilde{U}\left(X^a_t^*, \xi(X^a_t^*, p), p\right)\right]$$
Consider the contracts in the form:

\[\Xi := \{ Y_T = Y_0 - \int_0^T H(t, W_t, Z_t, p_t) dt + Z_t dW_t : Y_0 \in \mathbb{R}, Z \in \text{BMO}_2 \}, \]

where \(p_t = \mathcal{L}(X_t) \) for \(dX_t = \nabla_z H(t, X_t, Z_t, p_t) dt + dW_t. \)
Consider the contracts in the form:

$$\Xi := \left\{ Y_T = Y_0 - \int_0^T H(t, W_t, Z_t, p_t) dt + Z_t dW_t : Y_0 \in \mathbb{R}, Z \in \text{BMO}_2 \right\},$$

where $p_t = \mathcal{L}(X_t)$ for $dX_t = \nabla_z H(t, X_t, Z_t, p_t) dt + dW_t$. It follows from Carmona and Lacker (15’) that for $\xi \in \Xi$, $a_t^* = \nabla_z H(t, W_t, Z_t)$ and p form a MFE.
Same idea... (see Elie, Mastrolia, Possamai 16’)

Consider the contracts in the form:

$$\Xi := \left\{ Y_T = Y_0 - \int_0^T H(t, W_t, Z_t, p_t) dt + Z_t dW_t : \ Y_0 \in \mathbb{R}, Z \in \text{BMO}_2 \right\},$$

where $p_t = \mathcal{L}(X_t)$ for $dX_t = \nabla_z H(t, X_t, Z_t, p_t) dt + dW_t$. It follows from Carmona and Lacker (15’) that for $\xi \in \Xi$, $a_t^* = \nabla_z H(t, W_t, Z_t)$ and p form a MFE.

Therefore, both the contract ξ and the MFE (a^*, p) can be represented by (Y_0, Z)!
Consider the contracts in the form:

$$\Xi := \left\{ Y_T = Y_0 - \int_0^T H(t, W_t, Z_t, p_t) dt + Z_t dW_t : Y_0 \in \mathbb{R}, Z \in \text{BMO}_2 \right\},$$

where $p_t = \mathcal{L}(X_t)$ for $dX_t = \nabla_z H(t, X_t, Z_t, p_t) dt + dW_t$. It follows from Carmona and Lacker (15’) that for $\xi \in \Xi$, $a^*_t = \nabla_z H(t, W_t, Z_t)$ and p form a MFE.

Therefore, both the contract ξ and the MFE (a^*, p) can be represented by (Y_0, Z)! Using the representation we may rewrite the Principal’s optimization:

$$V_0^P = \sup_{\xi \in \Xi} \mathbb{E}\left[\tilde{U}\left(X^{a^*}, \xi(X^{a^*}, p), p \right) \right]$$
Consider the contracts in the form:

$$\Xi := \{ Y_T = Y_0 - \int_0^T H(t, W_t, Z_t, p_t) dt + Z_t dW_t : Y_0 \in \mathbb{R}, Z \in \text{BMO}_2 \}$$

where $p_t = \mathcal{L}(X_t)$ for $dX_t = \nabla_z H(t, X_t, Z_t, p_t) dt + dW_t$. It follows from Carmona and Lacker (15') that for $\xi \in \Xi$, $a_t^* = \nabla_z H(t, W_t, Z_t)$ and p form a MFE.

Therefore, both the contract ξ and the MFE (a^*, p) can be represented by (Y_0, Z)! Using the representation we may rewrite the Principal’s optimization:

$$V_0^P = \sup_{\xi \in \Xi} \mathbb{E} \left[\tilde{U}(X^{a^*}, \xi(X^{a^*}, p), p) \right]$$

$$= \sup_{Y_0 \in \mathbb{R}, Z \in \text{BMO}_2} \mathbb{E} \left[\tilde{U}(X^{a^*}, Y_T, p) \right],$$

which is a classical McKean-Vlasov control problem.
Table of Contents

1. Introduction

2. Mean-Field Game in Principal-Agent Problem: Many Agents

3. Connection to Mean-Field Planning problem

4. PA Problem with Many Principals
Mean-field Planning Problem

In his course in College de France, P-L. Lions introduced a mean-field planning problem, that is, given two marginal distributions μ_0, μ_1 on \mathbb{R}^d, study the following system:

\[
\begin{align*}
\partial_t u + \frac{1}{2} \Delta u + H(t, x, \nabla u, p) &= 0, \\
\partial_t p - \frac{1}{2} \Delta p + \text{div}(p \nabla_z H(t, x, \nabla u, p)) &= 0, \\
p_0 &= \mu_0, \quad p_T = \mu_1
\end{align*}
\]
Mean-field Planning Problem

In his course in College de France, P-L. Lions introduced a mean-field planning problem, that is, given two marginal distributions μ_0, μ_1 on \mathbb{R}^d, study the following system:

$$\begin{cases}
\partial_t u + \frac{1}{2} \Delta u + H(t, x, \nabla u, p) = 0, \\
\partial_t p - \frac{1}{2} \Delta p + \text{div}(p \nabla_z H(t, x, \nabla u, p)) = 0, \\
p_0 = \mu_0, \quad p_T = \mu_1
\end{cases}$$

Let $H(t, x, z, p) = \sup_a \{az - c(t, x, p, a)\}$. By dynamic programming,

$$u(0, X_0) = \sup_a \mathbb{E}\left[u(T, X_T^a) - \int_0^T c(t, X_t^a, p_t, a_t) dt\right], \quad p_t = \mathcal{L}(X_t^a),$$

where $dX_t^a = a_t dt + dW_t$.
Mean-field Planning Problem

In his course in College de France, P-L. Lions introduced a mean-field planning problem, that is, given two marginal distributions μ_0, μ_1 on \mathbb{R}^d, study the following system:

$$\begin{align*}
\partial_t u + \frac{1}{2} \Delta u + H(t, x, \nabla u, p) &= 0, \\
\partial_t p - \frac{1}{2} \Delta p + \text{div}(p \nabla_z H(t, x, \nabla u, p)) &= 0, \\
p_0 &= \mu_0, \quad p_T = \mu_1
\end{align*}$$

Let $H(t, x, z, p) = \sup_a \{az - c(t, x, p, a)\}$. By dynamic programming,

$$u(0, X_0) = \sup_a \mathbb{E} \left[u(T, X_T^a) - \int_0^T c(t, X_t^a, p_t, a_t) dt \right], \quad p_t = \mathcal{L}(X_t^{a^*}),$$

where $dX_t^a = a_t dt + dW_t$. Compared to the classical MFG, the terminal condition on u is replaced by the terminal condition on p.
Mean-field Planning Problem

In his course in College de France, P-L. Lions introduced a mean-field planning problem, that is, given two marginal distributions μ_0, μ_1 on \mathbb{R}^d, study the following system:

\[
\begin{aligned}
\partial_t u + \frac{1}{2} \Delta u + H(t, x, \nabla u, p) &= 0, \\
\partial_t p - \frac{1}{2} \Delta p + \text{div}(p \nabla z H(t, x, \nabla u, p)) &= 0, \\
p_0 = \mu_0, \quad p_T = \mu_1
\end{aligned}
\]

Let $H(t, x, z, p) = \sup_a \{az - c(t, x, p, a)\}$. By dynamic programming,

\[
u(0, X_0) = \sup_a \mathbb{E}[u(T, X_T^a) - \int_0^T c(t, X_t^a, p_t, a_t)dt], \quad p_t = \mathcal{L}(X_{t}^{a^*}),
\]

where $dX_t^a = a_t dt + dW_t$. Compared to the classical MFG, the terminal condition on u is replaced by the terminal condition on p.

See e.g. Porretta 14', Orrieri, Porretta, Savaré 18', Graber, Mészáros, Silva, Tonon 18', Benamou, Carlier, Di Marino, Nena 18'.
Let us turn back to the classical MFG:

Given $u_T = \xi$, we are able to find a MFE,
A relaxation related to PA problem

Let us turn back to the classical MFG:

Given $u_T = \xi$, we are able to find a MFE, which leads to p_T

So the mean-field planning is to search for ξ s.t. $p_T = \mu_1$.
A relaxation related to PA problem

Let us turn back to the classical MFG:

Given \(u_T = \xi \), we are able to find a MFE, which leads to \(p_T \).

So the mean-field planning is to search for \(\xi \) s.t. \(p_T = \mu_1 \).
A relaxation related to PA problem

Let us turn back to the classical MFG:

Given $u_T = \xi$, we are able to find a MFE, which leads to p_T

So the mean-field planning is to search for ξ s.t. $p_T = \mu_1$.

But WHO is searching for ξ? and WHO are playing MFG?
A relaxation related to PA problem

Let us turn back to the classical MFG:

Given $u_T = \xi$, we are able to find a MFE, which leads to p_T

So the mean-field planning is to search for ξ s.t. $p_T = \mu_1$.

Principal is searching for ξ, while Agents are playing MFG
A relaxation related to PA problem

Let us turn back to the classical MFG:

Given \(u_T = \xi \), we are able to find a MFE, which leads to \(p_T \).

So the mean-field planning is to search for \(\xi \) s.t. \(p_T = \mu_1 \).

Principal is searching for \(\xi \), while Agents are playing MFG.

Here is the corresponding PA problem.

Agent solves

\[
V_0^A = \max_a \mathbb{E} \left[\xi(X^a, p) - \int_0^T c(t, X^a_t, p_t, a_t) dt \right]
\]

where \(dX^a_t = a_t dt + dW_t \).

at MFE we have \(p_t = \mathcal{L}(X^{a^*}_t) \).

Principal solves

\[
V_0^P = \min_\xi d(p_T, \mu_1)
\]
A relaxation related to PA problem

Let us turn back to the classical MFG:

Given \(u_T = \xi \), we are able to find a MFE, which leads to \(p_T \).

So the mean-field planning is to search for \(\xi \) s.t. \(p_T = \mu_1 \).

Principal is searching for \(\xi \), while Agents are playing MFG.

Here is the corresponding PA problem:

Agent solves

\[
V_0^A = \max_a \mathbb{E} \left[\xi(X^a, p) - \int_0^T c(t, X_t^a, p_t, a_t) dt \right]
\]

where \(dX_t^a = a_t dt + dW_t \)

at MFE we have \(p_t = \mathcal{L}(X_t^{a*}) \)

Principal solves

\[
V_0^P = \min_{\xi} d(p_T, \mu_1)
\]

In order to solve this PA problem, we relax the contract \(\xi \) to be a path-dependent function.
Advantage of the relaxation

As before, we solve the PA problem by representing \((\xi, a^*(\xi), p)\) by \((Y_0, Z)\)

\[
\xi(W, p) = Y_0 - \int_0^T H(t, W_t, Z_t, p_t) dt + Z_t dW_t \tag{1}
\]

\[
dX_t = \nabla_z H(t, X_t, Z_t, p_t) dt + dW_t \tag{2}
\]

\[
p_t = \mathcal{L}(X_t)
\]
Connection to Mean-Field Planning problem

Advantage of the relaxation

As before, we solve the PA problem by representing $(\xi, a^*(\xi), p)$ by (Y_0, Z)

\[
\xi(W, p) = Y_0 - \int_0^T H(t, W_t, Z_t, p_t)dt + Z_t dW_t \tag{1}
\]

\[
dX_t = \nabla_z H(t, X_t, Z_t, p_t)dt + dW_t \tag{2}
\]

\[
p_t = \mathcal{L}(X_t)
\]

Important observation: Given Z, (1) and (2) are decoupled!
Advantage of the relaxation

As before, we solve the PA problem by representing $(\xi, a^*(\xi), p)$ by (Y_0, Z)

$$\xi(W, p) = Y_0 - \int_0^T H(t, W_t, Z_t, p_t) dt + Z_t dW_t$$

$$dX_t = \nabla_z H(t, X_t, Z_t, p_t) dt + dW_t$$

$$p_t = \mathcal{L}(X_t)$$

Important observation: Given Z, (1) and (2) are decoupled! Now the mean-field planning problem becomes searching for Z s.t. $\mathcal{L}(X_T) = \mu_1$.
Advantage of the relaxation

As before, we solve the PA problem by representing \((\xi, a^*(\xi), p)\) by \((Y_0, Z)\)

\[
\xi(W, p) = Y_0 - \int_0^T H(t, W_t, Z_t, p_t)dt + Z_t dW_t \tag{1}
\]

\[
dX_t = \nabla_z H(t, X_t, Z_t, p_t)dt + dW_t \tag{2}
\]

\[
p_t = \mathcal{L}(X_t)
\]

Important observation: Given \(Z\), (1) and (2) are decoupled! Now the mean-field planning problem becomes searching for \(Z\) s.t. \(\mathcal{L}(X_T) = \mu_1\).

Note that (2) is a McKean-Vlasov SDE.
Advantage of the relaxation

As before, we solve the PA problem by representing \((\xi, a^*(\xi), p)\) by \((Y_0, Z)\)

\[
\xi(W, p) = Y_0 - \int_0^T H(t, W_t, Z_t, p_t) dt + Z_t dW_t
\]

(1)

\[
dX_t = \nabla_z H(t, X_t, Z_t, p_t) dt + dW_t
\]

(2)

\[
p_t = \mathcal{L}(X_t)
\]

Important observation: Given \(Z\), (1) and (2) are decoupled! Now the mean-field planning problem becomes searching for \(Z\) s.t. \(\mathcal{L}(X_T) = \mu_1\).

Note that (2) is a McKean-Vlasov SDE. In particular, if \(H(t, x, z, p) = h(t, x, z) + f(t, x, p)\), then

\[
dX_t = \nabla_z h(t, X_t, Z_t) dt + dW_t
\]

is a simpler SDE, which admits weak solution under general conditions.
Solution for linear quadratic model

Consider the LQ model, i.e. $h(t, x, z) = \frac{1}{2} z^2$. Then $dX_t = Z_t dt + dW_t$.
Solution for linear quadratic model

Consider the LQ model, i.e. \(h(t, x, z) = \frac{1}{2}z^2 \). Then \(dX_t = Z_t dt + dW_t \).

Proposition (R., Tan, Touzi)

If \(\mu_1 \) is equivalent to Leb. measure, then \(\exists Z \) s.t. \(p_T = \mu_1 \).
Solution for linear quadratic model

Consider the LQ model, i.e. \(h(t, x, z) = \frac{1}{2} z^2 \). Then \(dX_t = Z_t dt + dW_t \).

Proposition (R., Tan, Touzi)

If \(\mu_1 \) is equivalent to Leb. measure, then \(\exists Z \) s.t. \(p_T = \mu_1 \).

Proof. Let \(W^{\mu_0} \) be a B.M. with initial law \(\mu_0 \). Then \(\mathcal{L}(W^{\mu_0}_T) = \mu_0 \ast \mathcal{N}(0, T) \) is equiv. to Leb. measure, and thus \(\mu_1 \) is equiv. to \(\mathcal{L}(W^{\mu_0}_T) \) with a density denoted by \(\varphi \).
Solution for linear quadratic model

Consider the LQ model, i.e. \(h(t, x, z) = \frac{1}{2}z^2 \). Then \(dX_t = Z_t dt + dW_t \).

Proposition (R., Tan, Touzi)

If \(\mu_1 \) is equivalent to Leb. measure, then \(\exists Z \) s.t. \(p_T = \mu_1 \).

Proof. Let \(W^{\mu_0} \) be a B.M. with initial law \(\mu_0 \). Then
\[
\mathcal{L}(W^{\mu_0}_T) = \mu_0 \ast \mathcal{N}(0, T)
\]
is equiv. to Leb. measure, and thus \(\mu_1 \) is equiv. to \(\mathcal{L}(W^{\mu_0}_T) \) with a density denoted by \(\varphi \). Then
\[
\langle f, \mu_1 \rangle = \langle \varphi f, \mathcal{L}(W^{\mu_0}_T) \rangle = \mathbb{E}[\varphi(W^{\mu_0}_T)f(W^{\mu_0}_T)].
\]
Solution for linear quadratic model

Consider the LQ model, i.e. $h(t, x, z) = \frac{1}{2}z^2$. Then $dX_t = Z_t dt + dW_t$.

Proposition (R., Tan, Touzi)

If μ_1 is equivalent to Leb. measure, then $\exists Z$ s.t. $p_T = \mu_1$.

Proof. Let W^{μ_0} be a B.M. with initial law μ_0. Then $\mathcal{L}(W_T^{\mu_0}) = \mu_0 \ast \mathcal{N}(0, T)$ is equiv. to Leb. measure, and thus μ_1 is equiv. to $\mathcal{L}(W_T^{\mu_0})$ with a density denoted by φ. Then

$$\langle f, \mu_1 \rangle = \langle \varphi f, \mathcal{L}(W_T^{\mu_0}) \rangle = \mathbb{E}[\varphi(W_T^{\mu_0})f(W_T^{\mu_0})].$$

Note that $\varphi > 0$ and $\mathbb{E}[\varphi(W_T^{\mu_0})] = 1$, so $\varphi(W_T^{\mu_0})$ can be treated as a change of measure and there exists Z s.t. $\varphi(W_T^{\mu_0}) = \mathcal{D}(Z)$.
Consider the LQ model, i.e. \(h(t, x, z) = \frac{1}{2} z^2 \). Then \(dX_t = Z_t dt + dW_t \).

Proposition (R., Tan, Touzi)

If \(\mu_1 \) is equivalent to Leb. measure, then \(\exists Z \) s.t. \(p_T = \mu_1 \).

Proof. Let \(W^{\mu_0} \) be a B.M. with initial law \(\mu_0 \). Then \(\mathcal{L}(W^{\mu_0}_T) = \mu_0 * \mathcal{N}(0, T) \) is equiv. to Leb. measure, and thus \(\mu_1 \) is equiv. to \(\mathcal{L}(W^{\mu_0}_T) \) with a density denoted by \(\varphi \). Then

\[
\langle f, \mu_1 \rangle = \langle \varphi f, \mathcal{L}(W^{\mu_0}_T) \rangle = \mathbb{E}[\varphi(W^{\mu_0}_T)f(W^{\mu_0}_T)].
\]

Note that \(\varphi > 0 \) and \(\mathbb{E}[\varphi(W^{\mu_0}_T)] = 1 \), so \(\varphi(W^{\mu_0}_T) \) can be treated as a change of measure and there exists \(Z \) s.t. \(\varphi(W^{\mu_0}_T) = D(Z) \). Finally it follows from Girsanov theorem that

\[
\mathbb{E}[\varphi(W^{\mu_0}_T)f(W^{\mu_0}_T)] = \mathbb{E}[f(X_T)], \quad \text{for} \quad X_t = W^{\mu_0}_0 + \int_0^t Z_s ds + W_t
\]
Solution for linear quadratic model

Consider the LQ model, i.e. \(h(t, x, z) = \frac{1}{2}z^2 \). Then \(dX_t = Z_t dt + dW_t \).

Proposition (R., Tan, Touzi)

If \(\mu_1 \) is equivalent to Leb. measure, then \(\exists Z \) s.t. \(p_T = \mu_1 \).

Proof. Let \(W_{\mu_0}^T \) be a B.M. with initial law \(\mu_0 \). Then \(\mathcal{L}(W_{\mu_0}^T) = \mu_0 * \mathcal{N}(0, T) \) is equiv. to Leb. measure, and thus \(\mu_1 \) is equiv. to \(\mathcal{L}(W_{\mu_0}^T) \) with a density denoted by \(\varphi \). Then

\[
\langle f, \mu_1 \rangle = \langle f, \mathcal{L}(W_{\mu_0}^T) \rangle = \mathbb{E}[\varphi(W_{\mu_0}^T)f(W_{\mu_0}^T)].
\]

Note that \(\varphi > 0 \) and \(\mathbb{E}[\varphi(W_{\mu_0}^T)] = 1 \), so \(\varphi(W_{\mu_0}^T) \) can be treated as a change of measure and there exists \(Z \) s.t. \(\varphi(W_{\mu_0}^T) = \mathcal{D}(Z) \). Finally it follows from Girsanov theorem that

\[
\mathbb{E}[\varphi(W_{\mu_0}^T)f(W_{\mu_0}^T)] = \mathbb{E}[f(X_T)], \quad \text{for} \quad X_t = W_{\mu_0}^0 + \int_0^t Z_s ds + W_t
\]
Some extensions

Here are some feasible extensions:

- Let the volatility be controlled: \(dX_t = a_t dt + \sigma_t dW_t \)

- Since \(\{\xi : p_T = \mu_1\} \neq \emptyset \), Principal can further study the optimal transport problem:

\[
V_0^P = \max_{\xi : p_T = \mu_1} \mathbb{E}[\tilde{U}(X^{a^*}, \xi, p)].
\]

This is a generalization to the (semi-)martingale transport problem.
Table of Contents

1. Introduction
2. Mean-Field Game in Principal-Agent Problem: Many Agents
3. Connection to Mean-Field Planning problem
4. PA Problem with Many Principals
Many job opportunities
Agent can fire Boss...

Consider a model with **TWO Principals** but one Agent. Allow Agent to switch working for different Principals.
Agent can fire Boss...

Consider a model with **TWO Principals** but one Agent. Allow Agent to switch working for different Principals.

- Let $I_t \in \{0,1\}$ (right cont.) record for whom Agent works at time t.

\[
\text{Controlled output } \quad dX_t = \left(d(X_0^t, X_1^t)\right)^T = b(t, X_t, \lambda_{I_t}) dt + dW_t \text{, e.g.}
\]

Let I be a Poisson point proc. s.t. the first jump time τ follows the conditional law $P[\tau \geq t | F_{X_t, I_t}] = e^{-\int_0^t \lambda_s ds}$.

The intensity proc. λ describes the hesitation of changing employer. The bigger λ is, the less hesitation Agent has. We shall allow Agent to control I through choosing λ.

Agent can fire Boss...

Consider a model with **TWO Principals** but one Agent. Allow Agent to switch working for different Principals.

- Let $I_t \in \{0, 1\}$ (right cont.) record for whom Agent works at time t.
- Controlled output $dX_t = d(X_t^0, X_t^1)^\top = b(t, X_t, a_t^I, I_t)dt + dW_t$, e.g.

 $$b(t, x, a^0, 0) = \begin{pmatrix} a^0 \\ 0 \end{pmatrix} \quad \text{and} \quad b(t, x, a^1, 1) = \begin{pmatrix} 0 \\ a^1 \end{pmatrix}$$
Agent can fire Boss...

Consider a model with **TWO Principals** but one Agent. Allow Agent to switch working for different Principals.

- Let $l_t \in \{0, 1\}$ (right cont.) record for whom Agent works at time t.
- Controlled output $dX_t = d(X^0_t, X^1_t)^\top = b(t, X_t, a^l_t, l_t) dt + dW_t$, e.g.

$$b(t, x, a^0, 0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{and} \quad b(t, x, a^1, 1) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
Consider a model with **TWO Principals** but one Agent. Allow Agent to switch working for different Principals.

- Let $l_t \in \{0, 1\}$ (right cont.) record for whom Agent works at time t.
- Controlled output $dX_t = d(X^0_t, X^1_t) = b(t, X_t, a^l_t, l_t)dt + dW_t$, e.g.

\[
b(t, x, a^0, 0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{and} \quad b(t, x, a^1, 1) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}
\]

- Let l be a Poisson point proc. s.t. the first jump time τ follows the conditional law $\mathbb{P}[\tau \geq t | \mathcal{F}_t, l] = e^{-\int_0^t \lambda_s ds}$.
Consider a model with **TWO Principals** but one Agent. Allow Agent to switch working for different Principals.

- Let $I_t \in \{0, 1\}$ (right cont.) record for whom Agent works at time t.
- Controlled output $dX_t = d(X^0_t, X^1_t) = b(t, X_t, a^I_t, I_t)dt + dW_t$, e.g.

$$b(t, x, a^0, 0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{and} \quad b(t, x, a^1, 1) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- Let I be a Poisson point proc. s.t. the first jump time τ follows the conditional law $\mathbb{P}[\tau \geq t|\mathcal{F}_t, I] = e^{-\int_0^t \lambda s ds}$. The intensity proc. λ describes the hesitation of changing employer. The bigger λ is, the less hesitation Agent has. We shall allow Agent to control I through choosing λ.
Agent’s problem: optimal switching

Given two contracts ξ^0, ξ^1, Agent solves the optimal switching problem

$$V^A_0 = \max_{a, \lambda} \mathbb{E}[\xi^0 1_{\{I_T=0\}} + \xi^1 1_{\{I_T=1\}} - \int_0^T (c(t, X_t, a^I, l_t) + \frac{1}{2} |\lambda^I_t|^2) dt]$$
Agent’s problem: optimal switching

Given two contracts ξ^0, ξ^1, Agent solves the optimal switching problem

$$V^A_0 = \max_{a, \lambda} \mathbb{E}[\xi^0 1_{I_T=0} + \xi^1 1_{I_T=1} - \int_0^T (c(t, X_t, a^t_t, l_t) + \frac{1}{2} |\lambda^t_t|^2) dt]$$

Denote by $V^A_{t,0} := V^A_t |_{l_t=0}$ and $V^A_{t,1} := V^A_t |_{l_t=1}$.
Agent’s problem: optimal switching

Given two contracts ξ^0, ξ^1, Agent solves the optimal switching problem

$$V^A_0 = \max_{a, \lambda} \mathbb{E}[\xi^0 1_{\{I_T=0\}} + \xi^1 1_{\{I_T=1\}} - \int_0^T (c(t, X_t, a^t_t, I_t) + \frac{1}{2} |\lambda^t_I|) dt]$$

Denote by $V^A_{t,0} := V^A_t |_{I_t=0}$ and $V^A_{t,1} := V^A_t |_{I_t=1}$. By DPP:

$$\begin{cases} V^A_{0,0} = \max_{a, \lambda} \mathbb{E}[\xi^0 1_{\{\tau>T\}} + V^A_{\tau,1} 1_{\{\tau\leq T\}} - \int_0^{T\wedge \tau} \frac{1}{2} |\lambda^0_t| dt] \\ V^A_{0,1} = \max_{a, \lambda} \mathbb{E}[\xi^1 1_{\{\tau>T\}} + V^A_{\tau,0} 1_{\{\tau\leq T\}} - \int_0^{T\wedge \tau} \frac{1}{2} |\lambda^1_t| dt] \end{cases}$$

Note that $P[\tau \geq t | F_{X, I_t}] = e^{-\int_0^t \lambda_s ds} =: \Lambda_t$. This becomes classical control problem characterized by the BSDE system:

$$\begin{align*} dY^0_t &= -dt + Z^0_t dW_t, \quad Y^0_T = \xi^0 \\ dY^1_t &= -dt + Z^1_t dW_t, \quad Y^1_T = \xi^1 \end{align*}$$
Agent’s problem: optimal switching

Given two contracts ξ^0, ξ^1, Agent solves the optimal switching problem

$$V^A_0 = \max_{a, \lambda} \mathbb{E}[\xi^0 1_{\{I_T=0\}} + \xi^1 1_{\{I_T=1\}} - \int_0^T \left(c(t, X_t, a^l_t, I_t) + \frac{1}{2} |\lambda^l_t|^2 \right) dt]$$

Denote by $V^A_{t,0} := V^A_t|_{I_t=0}$ and $V^A_{t,1} := V^A_t|_{I_t=1}$. By DPP:

$$\begin{cases} V^A_{0,0} = \max_{a, \lambda} \mathbb{E}[\xi^0 1_{\{\tau>T\}} + V^A_{\tau,1} 1_{\{\tau\leq T\}} - \int_0^{T^\wedge \tau} \frac{1}{2} |\lambda^0_t|^2 dt] \\
V^A_{0,1} = \max_{a, \lambda} \mathbb{E}[\xi^1 1_{\{\tau>T\}} + V^A_{\tau,0} 1_{\{\tau\leq T\}} - \int_0^{T^\wedge \tau} \frac{1}{2} |\lambda^1_t|^2 dt] \end{cases}$$

Note that $\mathbb{P}[\tau \geq t \mid \mathcal{F}^X_t] = e^{-\int_0^t \lambda_s ds} =: \Lambda_t$.

Agent’s problem: optimal switching

Given two contracts ξ^0, ξ^1, Agent solves the optimal switching problem

\[
V_0^A = \max_{a, \lambda} \mathbb{E}\left[\xi^0 1_{\{I_T=0\}} + \xi^1 1_{\{I_T=1\}} - \int_0^T \left(c(t, X_t, a^t_l, l_t) + \frac{1}{2} |\lambda^t_l|^2 \right) dt \right]
\]

Denote by $V_t^{A,0} := V_t^A|_{l_t=0}$ and $V_t^{A,1} := V_t^A|_{l_t=1}$. By DPP:

\[
\begin{align*}
V_0^{A,0} &= \max_{a, \lambda} \mathbb{E}\left[\Lambda_T \xi^0 + \int_0^T \Lambda_t (\lambda^0_t V_t^{A,1} - \frac{1}{2} |\lambda^0_t|^2) dt \right] \\
V_0^{A,1} &= \max_{a, \lambda} \mathbb{E}\left[\Lambda_T \xi^1 + \int_0^T \Lambda_t (\lambda^1_t V_t^{A,1} - \frac{1}{2} |\lambda^1_t|^2) dt \right]
\end{align*}
\]

Note that $\mathbb{P}[\tau \geq t | \mathcal{F}_t^{X,l}] = e^{-\int_0^t \lambda_s ds} =: \Lambda_t$.
Agent’s problem: optimal switching

Given two contracts ξ^0, ξ^1, Agent solves the optimal switching problem

$$V_A^0 = \max_{a, \lambda} \mathbb{E} [\xi^0 1\{I_T=0\} + \xi^1 1\{I_T=1\} - \int_0^T (c(t, X_t, a^0_t, I_t) + \frac{1}{2}|\lambda^0_t|^2) \, dt]$$

Denote by $V_{t,0}^A := V_t^A|_{I_t=0}$ and $V_{t,1}^A := V_t^A|_{I_t=1}$. By DPP:

$$\begin{align*}
V_{0,0}^A &= \max_{a, \lambda} \mathbb{E} \left[\Lambda_T \xi^0 + \int_0^T \Lambda_t (\lambda^0_t V_{t,1}^A - \frac{1}{2}|\lambda^0_t|^2) \, dt \right] \\
V_{0,1}^A &= \max_{a, \lambda} \mathbb{E} \left[\Lambda_T \xi^1 + \int_0^T \Lambda_t (\lambda^1_t V_{t,1}^A - \frac{1}{2}|\lambda^1_t|^2) \, dt \right]
\end{align*}$$

Note that $\mathbb{P}[\tau \geq t|\mathcal{F}_t^{X,I}] = e^{-\int_0^t \lambda_s \, ds} =: \Lambda_t$. This becomes classical control problem characterized by the BSDE system

$$\begin{align*}
dY_t^0 &= -\max_{\lambda \geq 0} \{ -\lambda Y_t^0 + \lambda Y_t^1 - \frac{1}{2}\lambda^2 + Z_t^0 \} \, dt + Z_t^0 \, dW_t, \quad Y_T^0 = \xi^0 \\
dY_t^1 &= -\max_{\lambda \geq 0} \{ -\lambda Y_t^1 + \lambda Y_t^0 - \frac{1}{2}\lambda^2 + Z_t^1 \} \, dt + Z_t^1 \, dW_t, \quad Y_T^1 = \xi^1
\end{align*}$$
Agent’s problem: optimal switching

Given two contracts \(\xi^0, \xi^1\), Agent solves the optimal switching problem

\[
V^A_0 = \max_{a, \lambda} \mathbb{E}[\xi^0 1_{\{I_T=0\}} + \xi^1 1_{\{I_T=1\}} - \int_0^T (c(t, X_t, a^l_t, l_t) + \frac{1}{2}|\lambda^l_t|^2) dt]
\]

Denote by \(V^A_{t,0} := V^A_t|_{I_t=0}\) and \(V^A_{t,1} := V^A_t|_{I_t=1}\). By DPP:

\[
\begin{cases}
V^A_{0,0} = \max_{a, \lambda} \mathbb{E}[\Lambda_T \xi^0 + \int_0^T \Lambda_t (\lambda^0_t V^A_{t,1} - \frac{1}{2}|\lambda^0_t|^2) dt]

V^A_{0,1} = \max_{a, \lambda} \mathbb{E}[\Lambda_T \xi^1 + \int_0^T \Lambda_t (\lambda^1_t V^A_{t,1} - \frac{1}{2}|\lambda^1_t|^2) dt]
\end{cases}
\]

Note that \(\mathbb{P}[\tau \geq t|\mathcal{F}^X_t] = e^{-\int_0^t \lambda_s ds} =: \Lambda_t\). This becomes classical control problem characterized by the BSDE system

\[
\begin{cases}
dY^0_t = -\left(\frac{1}{2}(Y^1_t - Y^0_t)^2 + Z^0_t\right) dt + Z^0_t dW_t, \quad Y^0_T = \xi^0

dY^1_t = -\left(\frac{1}{2}(Y^0_t - Y^1_t)^2 + Z^1_t\right) dt + Z^1_t dW_t, \quad Y^1_T = \xi^1
\end{cases}
\]
Principal problem: Time Inconsistency

Based on the previous calculus, as before we may represent the contracts (ξ^0, ξ^1) by (Y^0_0, Y^1_0, Z^0, Z^1), i.e. consider the contracts in

$$
\Xi = \{ \xi^0 = Y^0_0 + \int_0^T \left(\frac{1}{2} (Y^1_t - Y^0_t)^2 + Z^0_t \right) dt + Z^0_t dW_t \\
\xi^1 = Y^1_0 + \int_0^T \left(\frac{1}{2} (Y^0_t - Y^1_t)^2 + Z^1_t \right) dt + Z^1_t dW_t \}.
$$
Principal problem: Time Inconsistency

Based on the previous calculus, as before we may represent the contracts \((\xi^0, \xi^1)\) by \((Y^0_0, Y^1_0, Z^0, Z^1)\), i.e. consider the contracts in

\[
\Xi = \left\{ \begin{array}{l}
\xi^0 = Y^0_0 + \int_0^T \left(\frac{1}{2}(Y^1_t - Y^0_t)^2 + Z^0_t \right) dt + Z^0_t dW_t \\
\xi^1 = Y^1_0 + \int_0^T \left(\frac{1}{2}(Y^0_t - Y^1_t)^2 + Z^1_t \right) dt + Z^1_t dW_t
\end{array} \right\}
\]

Under these contracts, Agent’s optimal intensity is

\[
\lambda^* = (Y^1_t - Y^0_t)1_{\{l_t=0\}} + (Y^0_t - Y^1_t)1_{\{l_t=1\}}
\]
Principal problem: Time Inconsistency

Based on the previous calculus, as before we may represent the contracts \((\xi^0, \xi^1)\) by \((Y_0^0, Y_0^1, Z^0, Z^1)\), i.e. consider the contracts in

\[
\Xi = \left\{ \xi^0 = Y_0^0 + \int_0^T \left(\frac{1}{2}(Y_t^1 - Y_t^0)^2 + Z_t^0 \right) dt + Z_t^0 dW_t \right. \\
\xi^1 = Y_0^1 + \int_0^T \left(\frac{1}{2}(Y_t^0 - Y_t^1)^2 + Z_t^1 \right) dt + Z_t^1 dW_t \right\}.
\]

Under these contracts, Agent’s optimal intensity is

\[\lambda^*_t = (Y_t^1 - Y_t^0) + 1_{\{I_t=0\}} + (Y_t^0 - Y_t^1) + 1_{\{I_t=1\}}\]

So Principal’s problem becomes

\[V_{0,i}^P = \max_{\xi^i \in \Xi} \mathbb{E}[U(X_T^i - \xi^i 1_{\{I_T=i\}})], \quad i \in \{0, 1\}\]
Principal problem: Time Inconsistency

Based on the previous calculus, as before we may represent the contracts \((\xi^0, \xi^1)\) by \((Y^0_0, Y^1_0, Z^0, Z^1)\), i.e. consider the contracts in

$$\begin{align*}
\Xi &= \left\{ \xi^0 = Y^0_0 + \int_0^T \left(\frac{1}{2}(Y^1_t - Y^0_t)^2 + Z^0_t \right) dt + Z^0_t dW_t \\
\xi^1 &= Y^1_0 + \int_0^T \left(\frac{1}{2}(Y^0_t - Y^1_t)^2 + Z^1_t \right) dt + Z^1_t dW_t \right\}.
\end{align*}$$

Under these contracts, Agent’s optimal intensity is

$$\lambda^*_t = (Y^1_t - Y^0_t) + 1\{I_t = 0\} + (Y^0_t - Y^1_t) + 1\{I_t = 1\}$$

So Principal’s problem becomes

$$V^P_{0,i} = \max_{Y^0_i, Z^i} \mathbb{E}[U(X^i_T - \xi^i 1\{I_T = i\})], \quad i \in \{0, 1\}$$
Principal problem: Time Inconsistency

Based on the previous calculus, as before we may represent the contracts \((\xi^0, \xi^1)\) by \((Y^0_0, Y^1_0, Z^0, Z^1)\), i.e. consider the contracts in

\[
\begin{align*}
\Xi &= \left\{ \begin{array}{l}
\xi^0 = Y^0_0 + \int_0^T \left(\frac{1}{2}(Y^1_t - Y^0_t)^2 + Z^0_t \right) dt + Z^0_t dW_t \\
\xi^1 = Y^1_0 + \int_0^T \left(\frac{1}{2}(Y^0_t - Y^1_t)^2 + Z^1_t \right) dt + Z^1_t dW_t
\end{array} \right. \\
\end{align*}
\]

Under these contracts, Agent’s optimal intensity is

\[
\lambda^*_t = (Y^1_t - Y^0_t) + 1_{\{I_t = 0\}} + (Y^0_t - Y^1_t) + 1_{\{I_t = 1\}}
\]

So Principal’s problem becomes

\[
V_{0, i}^{P} = \max_{Y^i_0, Z^i} E[U(X^i_T - \xi^i 1_{\{I_T = i\}})], \quad i \in \{0, 1\}
\]

However, since \(Z\) does NOT dependent on \(I\), this optimization is time-inconsistent.
More principals...

Consider the same model but with n Principals. After an appropriate normalization, the Agent’s problem can be characterized by the system of BSDE:

$$dY_t^i = -\left(\frac{1}{2(n-1)} \sum_{j \neq i} (Y_t^j - Y_t^i)^2 + Z_t^i\right)dt + Z_t^i dW_t, \quad Y_T^0 = \xi^i, \quad 1 \leq i \leq n,$$

and the optimal intensity of switching to j-th Principal is $\lambda_t^{j,*} = \frac{(Y_t^j - Y_t^i)_+}{n-1}$.

Let $n \rightarrow \infty$. Heuristically, the equation converges to

$$dY_t = -\left(\frac{1}{2} \int (y - Y_t)_+ p_t(dy) + Z_t\right)dt + Z_t dW_t, \quad p_t = \mathcal{L}(Y_t)$$

and once Agent leaves a company, there is NO chance he comes back.
MFG among Principals

Given \(\{p_t\} \), consider the contract represented by \(Y_0, Z \):

\[
\xi \in \Xi(p) = \left\{ Y_0 - \int_0^T \left(\frac{1}{2} \int (y - Y_t)^2 p_t(dy) + Z_t \right) dt + \int_0^T Z_t dW_t \right\}
\]

Each Principal faces the optimization:

\[
\lambda_t = \int (y - Y_t) + p_t(dy) \text{ and } \Lambda_t = e^{-\int_0^t \lambda_s ds}.
\]

Once \(L(Y_\ast_t) = p_t \), the Principals reach a MFE.

Proposition (Hu, R., Yang) Further assume \(|Z|_\infty \leq C \). Then there exists such MFE.
MFG among Principals

Given \(\{p_t\} \), consider the contract represented by \(Y_0, Z \):

\[
\xi \in \Xi(p) = \left\{ Y_0 - \int_0^T \left(\frac{1}{2} \int (y - Y_t)^2 p_t(dy) + Z_t \right) dt + \int_0^T Z_t dW_t \right\}
\]

Each Principal faces the optimization:

\[
V_{0}^{P,i}(p) = \max_{Y_0^i, Z_i^i} \mathbb{E}[X_T^i - \xi^i 1_{\{I_T=i\}}]
\]
MFG among Principals

Given \(\{p_t\} \), consider the contract represented by \(Y_0, Z \):

\[
\xi \in \Xi(p) = \left\{ Y_0 - \int_0^T \left(\frac{1}{2} \int (y - Y_t)^2 + p_t(dy) + Z_t \right) dt + \int_0^T Z_t dW_t \right\}
\]

Each Principal faces the optimization:

\[
V_{0}^{P,i}(p) = \max_{Y_{0}^{i}, Z^{i}} \mathbb{E}[X_{T}^{i} - \xi^{i} 1_{\{I_{T}=i\}}]
\]

\[
= \begin{cases}
\mathbb{E}[X_{0}^{i} + W_{T}] = X_{0}^{i}, & \text{as } l_0 \neq i \\
\max_{Y_{0}^{i}, Z^{i}} \mathbb{E}[X_{T}^{i} 1_{\{\tau \leq T\}} - Y_{T}^{i} 1_{\{\tau > T\}}], & \text{as } l_0 = i
\end{cases}
\]
MFG among Principals

Given \(\{p_t\} \), consider the contract represented by \(Y_0, Z \):

\[
\xi \in \Xi(p) = \left\{ Y_0 - \int_0^T \left(\frac{1}{2} \int (y - Y_t)^2 + p_t(dy) + Z_t \right) dt + \int_0^T Z_t dW_t \right\}
\]

Each Principal faces the optimization:

\[
V_0^P(p) = \max_{Y_0, Z} \mathbb{E}\left[\int_0^T \lambda_t \Lambda_t X_t dt - \Lambda_T Y_T \right]
\]

where \(\lambda_t = \int (y - Y_t)_+ p_t(dy) \) and \(\Lambda_t = e^{-\int_0^t \lambda_s ds} \).
MFG among Principals

Given \(\{p_t\} \), consider the contract represented by \(Y_0, Z \):

\[
\begin{align*}
{\xi} & \in \Xi(p) = \left\{ Y_0 - \int_0^T \left(\frac{1}{2} \int (y - Y_t)^2 p_t(dy) + Z_t \right) dt + \int_0^T Z_t dW_t \right\}
\end{align*}
\]

Each Principal faces the optimization:

\[
V^p_0(p) = \max_{Y_0, Z} \mathbb{E} \left[\int_0^T \lambda_t \Lambda_t X_t dt - \Lambda_T Y_T \right]
\]

where \(\lambda_t = \int (y - Y_t)_+ p_t(dy) \) and \(\Lambda_t = e^{-\int_0^t \lambda_s ds} \).

Once \(\mathcal{L}(Y^*_t) = p_t \), the Principals reach a MFE.
MFG among Principals

Given \(\{p_t\} \), consider the contract represented by \(Y_0, Z \):

\[
\xi \in \Xi(p) = \left\{ Y_0 - \int_0^T \left(\frac{1}{2} \int (y - Y_t)^2 p_t(dy) + Z_t \right) dt + \int_0^T Z_t dW_t \right\}
\]

Each Principal faces the optimization:

\[
V^P_0(p) = \max_{Y_0, Z} \mathbb{E} \left[\int_0^T \lambda_t \Lambda_t X_t dt - \Lambda_T Y_T \right]
\]

where \(\lambda_t = \int (y - Y_t)_+ p_t(dy) \) and \(\Lambda_t = e^{-\int_0^t \lambda_s ds} \).

Once \(\mathcal{L}(Y_t^*) = p_t \), the Principals reach a MFE.

Proposition (Hu, R., Yang)

Further assume \(|Z|_\infty \leq C \). Then there exists such MFE.
Conclusion

- The probabilist analysis on MFG is well compatible to the dynamic programming approach of PA problem
Conclusion

- The probabilist analysis on MFG is well compatible to the dynamic programming approach of PA problem.
- The PA perspective provides a probabilist model to the relaxed MF planning problem, and gives rise to some advantages.
Conclusion

- The probabilist analysis on MFG is well compatible to the dynamic programming approach of PA problem
- The PA perspective provides a probabilist model to the relaxed MF planning problem, and gives rise to some advantages
- The MFG formulation helps to solve the infinite-Principal case, by avoiding the difficult feature in the finite-Principal case
Thank you for your attention!