

Schauder Estimates for a Class of Potential Mean Field Games of Controls

J. Frédéric Bonnans

CMAP and Inria-Saclay

Joint work with L. Pfeiffer (University of Graz)

and S. Hadikhanloo (on leave from CMAP)

What is a mean field game?

Model for the following situation:

- Infinitely many agents, all identical and solving an optimal control problem
- They agents interact: the cost function of one single agent is influenced by all the others
- The agents do not cooperate → Nash equilibrium.

The game is described by a coupled system of two PDEs:

- Hamilton-Jacobi-Bellman (HJB) equation, describing the optimal behavior of each agent
- **Pokker-Planck** equation (FP), describing the evolution of the distribution of the agents.

Goal

In this talk: proof of existence of a classical solution for the following **Mean Field Game of Controls**:

$$\begin{cases} (i) & -\partial_t u - \sigma \Delta u + H(\nabla u + P) = 0 & (x, t) \in Q, \\ (ii) & \partial_t m - \sigma \Delta m + \operatorname{div}(vm) = 0 & (x, t) \in Q, \\ (iii) & P(t) = \Psi\left(\int_{\mathbb{T}^d} v(x, t) m(x, t) \, \mathrm{d}x\right) & t \in [0, T], \\ (iv) & v = -\nabla H(\nabla u + P) & (x, t) \in Q, \\ (v) & m(x, 0) = m_0(x), \quad u(x, T) = g(x) & x \in \mathbb{T}^d, \end{cases}$$
 (MFGC)

Specificity: coupling via the variable *P* (modelling a **price**), depending on both the distribution of the agents and **their controls**.

1 Empirical construction of the model

2 Potential formulation

3 Existence result

4 Duality

2 Potential formulation

3 Existence result

4 Duality

Consider the following situation with 2 agents making decisions $x_1 \in X_1$ and $x_2 \in X_2$ respectively:

- Agent 1 aims at minimizing $f_1(\cdot, x_2)$, when agent 2 plays x_2
- Agent 2 aims at minimizing $f_2(x_1, \cdot)$, when agent 1 plays x_1 .

Definition

A pair (\bar{x}_1, \bar{x}_2) is called **Nash equilibrium** if

$$ar{x}_1 \in \mathop{\mathsf{arg\;min}}_{x_1 \in X_1} f_1(x_1, ar{x}_2) \quad \mathsf{and} \quad ar{x}_2 \in \mathop{\mathsf{arg\;min}}_{x_2 \in X_2} f_2(ar{x}_1, x_2).$$

Remark. Concept easily generalized to N agents.

Underlying assumptions.

- Simultaneous decisions.
- The agents **do not cooperate**. In some situations, they should: a pair (x_1, x_2) may exist, such that

$$f_1(\bar{x}_1, \bar{x}_2) > f_1(x_1, x_2)$$
 and $f_2(\bar{x}_1, \bar{x}_2) > f_2(x_1, x_2)$.

- Agent 1 knows f_2 , Agent 2 knows f_1 .
 - \rightarrow Alternative (learning procedure): the game is repeated many times, and Agent 1 (resp. Agent 2) makes a prediction on the behavior of Agent 2 (resp. Agent 1):

$$x_1^k \in \underset{x_1 \in X_1}{\text{arg min }} f_1\left(x_1, \frac{1}{k} \sum_{i=0}^{k-1} x_2^i\right), \quad x_2^k \in \underset{x_2 \in X_2}{\text{arg min }} f_2\left(\frac{1}{k} \sum_{i=0}^{k-1} x_1^i, x_2\right).$$

An example of a game.

Consider N producers, buy some raw material on a market.

- Quantity bought by producer i: v_i
- Benefit resulting from v_i : $-L_i(v_i)$
- Unitary price of raw material: $P = \Psi(\sum_{i=1}^{N} v_i)$.
- Nash equilibrium: a vector $\bar{v} \in \mathbb{R}^N$ such that

$$\bar{v}_i \in \operatorname*{arg\ min}_{v_i \in \mathbb{R}} \big\{ L_i(v_i) + \Psi \big(\sum_{j=1}^N \bar{v}_j \big) v_i \big\},$$

for
$$i = 1, ..., N$$
.

Remark

The producers do not take into account their contribution to the equilibrium price P.

Duality

Assumptions:

- $L_1,...,L_N$ are strongly convex
- $\Psi = \nabla \Phi$, with Φ convex

Potential formulation:

Let
$$B \colon v \in \mathbb{R}^N \mapsto B(v) = \sum_{i=1}^N L_i(v_i) + \Phi\left(\sum_{i=1}^N v_i\right)$$
. Then, $\bar{v} \in \mathbb{R}^N$ is a Nash equilibrium
$$\iff \underline{\nabla L_i(\bar{v}_i) + \Psi\left(\sum_{j=1}^N \bar{v}_j\right)} = 0, \ \forall i = 1, ..., N$$

$$\iff \bar{v} \text{ minimizes } B.$$

The mapping B is strongly convex, thus there exists a unique Nash equilibrium.

Remark

Our MFG of controls is a **dynamical** version of the situation described above, with a continuum of agents.

Reformulation of the equilibrium conditions.

Convex conjugate of L_i :

$$L_i^*(\lambda) = \sup_{v_i \in \mathbb{R}} \lambda v_i - L_i(v_i).$$

Since L_i is strongly convex, L_i^* is differentiable, moreover,

$$L_i^*(\lambda) = \langle \lambda, v_i \rangle - L_i(v_i) \iff v_i = \nabla L_i^*(\lambda).$$

Therefore, \bar{v} is a Nash equilibrium if and only if

$$\bar{v}_i = \nabla L_i^*(-P), \ \forall i = 1, ..., N$$
 and $P = \Psi(\sum_{i=1}^N \bar{v}_i).$

HJB equation

Consider the following stochastic optimal control problem:

$$u(x,t) = \inf_{V \in \mathbb{L}^2(t,T)} \mathbb{E} \Big[\int_t^T L(V(s)) + \langle P(s), V(s) \rangle \, \mathrm{d}s + g(X(T)) \Big],$$

subject to:
$$\begin{cases} \dot{X}(s) = V(s) + \sqrt{2\sigma}W(s), \ s \in (t,T) \\ X(t) = x, \end{cases}$$

given $L \colon \mathbb{R}^d \to \mathbb{R}$, $P \in L^2(0, T; \mathbb{R}^d)$, $g \colon \mathbb{R}^d \to \mathbb{R}$, and $x_0 \in \mathbb{R}^d$.

Application: charge of an electrical vehicle.

- speed of charge (at time s): V(s)
- unitary price of electricity: P(s)
- state of charge of the battery: X(s).

Duality

Assume that g is periodic with period 1. Let $Q = \mathbb{T}^d \times (0, T)$. Let $H(p) = L^*(-p)$. The value function is a viscosity solution to

$$\begin{cases}
-\partial_t u - \sigma \Delta u = -H(P(t) + \nabla u(x, t)), & (x, t) \in Q, \\
u(x, T) = g(x), & x \in \mathbb{T}^d,
\end{cases}$$
(HJB)

For a solution \bar{V} with associated trajectory \bar{X} , we have:

$$\bar{V}(t) = -\nabla H(\nabla u(\bar{X}(t), t) + P(t)) =: v(\bar{X}(t), t).$$

Remark

The optimal feedback law $v(x,t) = -\nabla H(\nabla u(x,t)) + P(t)$ does not depend on the initial condition of (OCP).

Fokker-Planck equation

Back to the Mean Field Game model.

- Continuum of identical agents (with different initial conditions), all solving (OCP), thus all using the same feedback law.
- Let *m* denote the **distribution** of the agents:

$$\int_{\omega} m(x,t) \, \mathrm{d}x \to \text{Proportion of agents located in } \omega \text{ at time } t.$$

■ The distribution m is solution to the Fokker-Planck equation:

$$\begin{cases} \partial_t m - \sigma \Delta m + \operatorname{div}(vm) = 0, & (x, t) \in Q, \\ m(x, 0) = m_0(x), & x \in \mathbb{T}^d, \end{cases}$$
 (FP)

where the initial distribution m_0 is given.

Duality

Mean Field Game of Controls

Complete model:

$$\begin{cases} (i) & -\partial_t u - \sigma \Delta u + H(\nabla u + P) = 0 & (x, t) \in Q, \\ (ii) & \partial_t m - \sigma \Delta m + \operatorname{div}(vm) = 0 & (x, t) \in Q, \\ (iii) & P(t) = \Psi\left(\int_{\mathbb{T}^d} v(x, t) m(x, t) \, \mathrm{d}x\right) & t \in [0, T], \\ (iv) & v = -\nabla H(\nabla u + P) & (x, t) \in Q, \\ (v) & m(x, 0) = m_0(x), \quad u(x, T) = g(x) & x \in \mathbb{T}^d, \end{cases}$$
 (MFGC)

Unknown: u = u(x, t), m = m(x, t), P = P(t), v = v(x, t). **Endogenous price** P (as in the introductory example).

Remark

If P is exogenous and (iii) removed, then the system is decoupled.

Application example: car drivers buy electricy on a small market.

1 Empirical construction of the model

2 Potential formulation

3 Existence result

4 Duality

Model

Model

Given
$$\alpha \in (0,1)$$
 and $X = [0,T]$, $X = \mathbb{T}^d$, or $X = Q$,
$$C^{j+\alpha}(X) := \left\{ u \in C^j(X) \, | \, \exists C > 0, \, \forall x,y \in X, \\ \|D^i u(y) - D^i u(x)\| \le C \|y - x\|_X^\alpha, \text{ whenever } |i| \le j \right\},$$

$$C^{\alpha,\alpha/2}(Q) := \left\{ u \in C(Q) \, | \, \exists C > 0, \, \forall x,y \in X, \\ |u(x_2,t_2) - u(x_1,t_1)| \le C \left(\|x_2 - x_1\|^\alpha + |t_2 - t_1|^{\alpha/2} \right) \right\}$$

$$C^{2+\alpha,1+\alpha/2}(Q) := \left\{ u \in C^{\alpha,\alpha/2}(Q) \, | \, \partial_t u \in C^{\alpha,\alpha/2}(Q), \\ \nabla u \in C^{\alpha,\alpha/2}(Q), \, \nabla^2 u \in C^{\alpha,\alpha/2}(Q) \right\}.$$

We fix p > d + 2 and define the Sobolev space

$$W^{2,1,p}(Q) := L^p(0,T;W^{2,p}(Q)) \cap W^{1,p}(Q).$$

Embedding: $||u||_{C^{\alpha}(Q)} + ||\nabla u||_{C^{\alpha}(Q)} \le C||u||_{W^{2,1,p}(Q)}$.

Assumptions

Monotonicity assumptions:

- $\Psi = \nabla \Phi$, where Φ is convex
- L is strongly convex.

Growth assumptions:

- $L(v) \leq C(1 + ||v||^2)$
- $\Psi(z) \leq C(1 + ||z||).$

Regularity assumptions:

- $H \in C^2(\mathbb{R}^d)$, H, ∇H , $\nabla^2 H$ are locally Hölder continuous
- Ψ is locally Hölder continuous
- lacksquare $m_0 \in C^{2+lpha}(\mathbb{T}^d)$, $g \in C^{2+lpha}(\mathbb{T}^d)$
- $m_0 \in \mathcal{D}_1(\mathbb{T}^d) := \{ h \in L^{\infty}(\mathbb{T}^d) \mid h \ge 0, \ \int_{\mathbb{T}^d} h(x) \, \mathrm{d}x = 1 \}.$

Auxiliary mappings

We analyse (iii) and (iv) to eliminate v and P from (MFGC).

Lemma

For all $m \in \mathcal{D}_1(\mathbb{T}^d)$, for all $w \in L^{\infty}(\mathbb{T}^d, \mathbb{R}^d)$, there exists a unique pair $(v, P) = (\mathbf{v}(m, w), \mathbf{P}(m, w)) \in L^{\infty}(\mathbb{T}^d, \mathbb{R}^d) \times \mathbb{R}^d$ such that

$$\begin{cases} v(x) = -\nabla H(w(x) + P), & \forall x \in \mathbb{T}^d, \\ P = \Psi(\int_{\mathbb{T}^d} v(x) m(x) dx). \end{cases}$$
 (*)

Elements of proof. If m > 0, then (v, P) satisfies (*) if and only if v minimizes the following convex functional:

$$J(v)\colon v\mapsto \Phi\big(\int_{\mathbb{T}^d}v(x)m(x)\,\mathrm{d}x\big)+\int_{\mathbb{T}^d}\big(L(v(x))+\langle w(x),v(x)\rangle\big)m(x)\,\mathrm{d}x,$$

which possesses a unique minimizer.

Auxiliary mappings

Reduced coupled system:

$$\begin{cases}
-\partial_t u - \sigma \Delta u + H(\nabla u + \mathbf{P}(m(\cdot, t), \nabla u(\cdot, t))) = 0, \\
\partial_t m - \sigma \Delta m + \operatorname{div}(\mathbf{v}(m(\cdot, t), \nabla u(\cdot, t))m) = 0, \\
u(x, T) = g(x), \quad m(x, 0) = m_0(x).
\end{cases}$$
(MFGC')

Lemma (Stability lemma)

Let R>0, let m_1 and $m_2\in \mathcal{D}_1(\mathbb{T}^d)$, let w_1 and $w_2\in L^\infty(\mathbb{T}^d,\mathbb{R}^d)$ with $\|w_i\|_{L^\infty(\mathbb{T}^d,\mathbb{R}^d)}\leq R$. There exists C>0 and $\alpha\in(0,1)$, depending on R only such that

$$\begin{aligned} \| \mathbf{P}(m_2, w_2) - \mathbf{P}(m_1, w_1) \| \\ &\leq C (\| w_2 - w_1 \|_{L^{\infty}(\mathbb{T}^d)}^{\alpha} + \| m_2 - m_1 \|_{L^{1}(\mathbb{T}^d)}^{\alpha}). \end{aligned}$$

Idea of proof: stability analysis for convex optimization problems.

Potential formulation

Model

Consider the cost function $B: W^{2,1,p}(Q) \times L^{\infty}(Q) \to \mathbb{R}$,

$$B(m, v) = \iint_{Q} L(v(x, t))m(x, t) dx dt + \int_{\mathbb{T}^{d}} g(x)m(x, T) dx$$
$$+ \int_{0}^{T} \Phi(\int_{\mathbb{T}^{d}} v(x, t)m(x, t) dx) dt.$$

Lemma

Let $(\bar{u}, \bar{m}, \bar{v}, \bar{P}) \in W^{2,1,p}(Q)^2 \times L^{\infty}(Q, \mathbb{R}^d) \times L^{\infty}(0, T; \mathbb{R}^k)$ be a solution to (MFGC). Then, (\bar{m}, \bar{v}) is a **solution** to:

$$\min_{\substack{m \in W^{2,1,p}(Q) \\ v \in L^{\infty}(Q,\mathbb{R}^k)}} B(m,v) \quad s.t.: \begin{cases} \partial_t m - \sigma \Delta m + \operatorname{div}(vm) = 0, \\ m(x,0) = m_0(x). \end{cases}$$

1 Empirical construction of the model

2 Potential formulation

3 Existence result

4 Duality

Model

Result and approach

$\mathsf{Theorem}$

Model

There exists a classical solution to (MFGC) with

$$u \in C^{2+\alpha,1+\alpha/2}(Q), \qquad m \in C^{2+\alpha,1+\alpha/2}(Q), v \in C^{\alpha}(Q), D_x v \in C^{\alpha}(Q), \quad P \in C^{\alpha}(0,T).$$

Theorem (Leray-Schauder)

Let X be a Banach space and let $T: X \times [0,1] \to X$ satisfy:

- 1 \mathcal{T} is a continuous and compact mapping,
- $\exists \tilde{x} \in X, \ \mathcal{T}(x,0) = \tilde{x} \ \text{for all } x \in X,$
- $\exists C > 0, \ \forall (x, \tau) \in X \times [0, 1],$

$$\mathcal{T}(x,\tau) = x \Longrightarrow ||x||_X \le C.$$

Then, there exists $x \in X$ such that $\mathcal{T}(x,1) = x$.

Parabolic estimates

Consider the parabolic equation:

$$\begin{cases} \partial_t u - \sigma \Delta u + \langle b, \nabla u \rangle + cu = h, & (x, t) \in Q, \\ u(x, 0) = u_0(x), & x \in \mathbb{T}^d. \end{cases}$$

Assume that $u_0 \in C^{2+\alpha}(\mathbb{T}^d)$.

Theorem

- **1** Assume that $b \in L^p(Q)$, $c \in L^p(Q)$, and $h \in L^p(Q)$. Then, $u \in W^{2,1,p}(Q)$, $u \in C^{\alpha}(Q)$, and $\nabla u \in C^{\alpha}(Q)$.
- **2** Assume that $b \in C^{\beta,\beta/2}(Q)$, $c \in C^{\beta,\beta/2}(Q)$, and $h \in C^{\beta,\beta/2}(Q)$. Then, $u \in C^{2+\alpha,1+\alpha/2}(Q)$.

Construction of \mathcal{T}

Let
$$X = (W^{2,1,p}(Q))^2$$
. For $(u, m, \tau) \in X \times [0, 1]$, $(\tilde{u}, \tilde{m}) = \mathcal{T}(u, m, \tau) \in W^{2,1,p}(Q)^2$ where:

 \tilde{u} is the solution to

$$\begin{cases}
-\partial_t \tilde{u} - \sigma \Delta \tilde{u} + \tau H(\nabla u + \mathbf{P}(\rho(m), \nabla u)) = 0, \\
\tilde{u}(T, x) = \tau g(x),
\end{cases}$$

 \blacksquare \tilde{m} is the solution

$$\begin{cases} \partial_t \tilde{m} - \sigma \Delta \tilde{m} + \tau \operatorname{div}(\mathbf{v}(\rho(m), \nabla u)m) = 0, \\ \tilde{m}(x, 0) = m_0(x), \end{cases}$$

Here $\rho \colon L^{\infty}(\mathbb{T}^d) \to \mathcal{D}_1(\mathbb{T}^d)$ is a kind of regular projection operator $(\rho(m) = m \text{ for } m \in \mathcal{D}_1).$

Regularity of ${\mathcal T}$

Lemma

- 1 The mapping T is continuous.
- **2** For all R > 0, there exist C > 0 and $\alpha \in (0,1]$ such that for all $(u,m) \in W^{2,1,p}(Q)$ and for all $\tau \in [0,1]$,

$$||u||_{W^{2,1,p}(Q)} + ||m||_{W^{2,1,p}(Q)} \le R$$

$$\implies ||\tilde{u}||_{C^{2+\alpha,1+\alpha/2}(Q)} + ||\tilde{m}||_{C^{(2+\alpha,1+\alpha/2}(Q)} \le C,$$

where
$$(\tilde{u}, \tilde{m}) = \mathcal{T}(u, m, \tau)$$
.

Consequence: \mathcal{T} is compact, by the theorem of Arzelà-Ascoli.

Proposition

Model

There exist C>0 and $\alpha\in(0,1)$ such that for all $(u,m, au)\in X\times[0,1]$ satisfying $(u,m)=\mathcal{T}(u,m, au)$, we have

$$||u||_{C^{2+\alpha,1+\alpha/2}(Q)} \le C, ||m||_{C^{2+\alpha,1+\alpha/2}(Q)} \le C, ||v||_{C^{\alpha}(Q)} + ||D_{x}v||_{C^{\alpha}(Q)} \le C, ||P||_{C^{\alpha}(0,T)} \le C,$$

where $P = \mathbf{P}(m, \nabla u)$ and $v = \mathbf{v}(m, \nabla u)$.

Proof. For $\tau = 1$. The pair (m, v) is a solution to (\mathcal{P}) . Thus,

$$C\iint_{O} \|v(x,t)\|^{2} m(x,t) dx dt - C \leq B(m,v) \leq B(m_{0},v_{0}=0) \leq C.$$

Thus,

$$||P||_{L^2(0,T)}^2 \le C \Big(1 + \int_0^T ||\int_{\mathbb{T}^d} v m \, dx||^2 dt\Big) \le C \Big(1 + \int_0^T ||v||^2 m \, dx \, dt\Big) \le C.$$

$u, \nabla u \in L^{\infty}(Q)$	u value function of opt. control pb.
$P \in L^{\infty}(0,T;\mathbb{R}^k)$	Stability lemma
$H(\nabla u + P) \in L^{\infty}(Q)$ $u \in W^{2,1,p}(Q)$	Regularity of H HJB: parabolic eq. with L^p coeff.
$v \in L^{\infty}(Q, \mathbb{R}^d)$ $D_x v \in L^p(Q, \mathbb{R}^{d \times d})$	Stability lemma $D_{x}v = -\nabla^{2}H(\nabla u + P)\nabla^{2}u$
$m \in W^{2,1,p}(Q)$	FP: parabolic eq. with L^p coeff.
$P \in C^{lpha}(Q)$	Stability lemma
$H(\nabla u + P) \in C^{\alpha}(Q)$ $u \in C^{2+\alpha,1+\alpha/2}(Q)$	Regularity of <i>H</i> HJB: parabolic eq. with Hölder coeff.
$v, D_x v \in C^{\alpha}(Q)$	Stability lemma
$m \in C^{\alpha}(Q)$	FP: parabolic eq. with Hölder coeff.

1 Empirical construction of the model

2 Potential formulation

3 Existence result

4 Duality

Model

Duality

Consider the following criterion:

$$D(u,P) = -\int_{\mathbb{T}^d} u(x,0)m_0(x) dx - \int_0^T \Phi^*(P(t)) dt,$$

for $u \in W^{2,1,p}(Q)$ and $P \in L^{\infty}(0,T)$, and the **dual** problem:

$$\sup_{\substack{u \in W^{2,1,p}(Q) \\ P \in L^{\infty}(0,T)}} D(u,P), \quad \text{s.t.:} \left\{ \begin{array}{l} -\partial u_t - \sigma \Delta u + H(\nabla u + P) = 0, \\ u(x,T) = g(x). \end{array} \right.$$

Lemma

For all solutions $(\bar{u}, \bar{m}, \bar{v}, \bar{P})$ to (MFGC), the pair (\bar{u}, \bar{P}) is a **solution** to the dual problem.

Duality

Let (u, P) be feasible.

$$\begin{split} \int_{\mathbb{T}^d} u(x,0) m_0(x) \, \mathrm{d}x &- \int_{\mathbb{T}^d} u(x,T) \bar{m}(x,T) \, \mathrm{d}x \\ &= - \iint_Q \partial_t u \bar{m} \, \mathrm{d}x \, \mathrm{d}t - \iint_Q u \partial_t \bar{m} \, \mathrm{d}x \, \mathrm{d}t \\ &= \iint_Q (\sigma \Delta u - H(\nabla u + P)) \bar{m} \, \mathrm{d}x \, \mathrm{d}t - \iint_Q u(\sigma \Delta \bar{m} - \operatorname{div}(\bar{v}\bar{m})) \, \mathrm{d}x \, \mathrm{d}t \\ &\leq \iint_Q \left(L(\bar{v}) + \langle \nabla u + P, \bar{v} \rangle \right) \bar{m} \, \mathrm{d}x \, \mathrm{d}t - \iint_Q \langle \nabla u, \bar{v} \rangle \bar{m} \, \mathrm{d}x \, \mathrm{d}t \\ &= \iint_Q \left(L(\bar{v}) + \langle P, \bar{v} \rangle \right) \bar{m} \, \mathrm{d}x \, \mathrm{d}t. \end{split}$$

Therefore,

$$\int_{\mathbb{T}^d} u(x,0) m_0(x) \, \mathrm{d} x \leq \int_{\mathbb{T}^d} g(x) \bar{m}(x,T) \, \mathrm{d} x + \iint_{Q} \big(L(\bar{v}) + \langle P, \bar{v} \rangle \big) \bar{m} \, \mathrm{d} x \, \mathrm{d} t.$$

Duality

We also have:

$$-\int_0^T \Phi^*(P(t))\,\mathrm{d} t \leq -\int_0^T \left\langle P(t), \int_{\mathbb{T}^d}\! \bar{v}\bar{m}\,\mathrm{d} x \right\rangle + \int_0^T \Phi\!\left(\int_{\mathbb{T}^d}\! \bar{v}\bar{m}\right)\mathrm{d} t.$$

Therefore,

$$D(u,P) \leq \iint_{Q} L(\bar{v})\bar{m} \,dx \,dt + \int_{\mathbb{T}^{d}} g(x)\bar{m}(x,T) \,dx + \int_{0}^{T} \Phi(\int_{\mathbb{T}^{d}} \bar{v}\bar{m}) \,dt = B(\bar{v},\bar{m}).$$

Equality holds for $(u, P) = (\bar{u}, \bar{P})$.

Outlook

Summary:

- Existence result for a (MFGC) based on a fixed-point theorem.
- A priori estimates for fixed points obtained with the help of a potential formulation.

Additional results:

- Uniqueness.
- HJB equations of the following form, with *f* smooth:

$$-\partial_t u - \sigma \Delta u + H(\nabla u + P) = f(m(\cdot, t)).$$

■ H can depend on (x, t), Ψ can depend on t.

Future work:

Convergence of a learning procedure.

References

Fixed-point approach:

 P.J. Graber, A. Bensoussan. Existence and uniqueness of solutions for Bertrand and Cournot Mean Field Games. Applied Math. Optim., 2015.

Related works:

- P. Cardaliaguet, C.-A. Lehalle. Mean Field Game of Controls and an application to trade crowding. Math. Financ. Econ., 2018.
- D.A. Gomes, S. Patrizi, V. Voskanya. Extended deterministic Mean Field Games. Nonlinear Anal., 2014.
- C. Alasseur, I. Ben Tahar, A. Matoussi. An extended Mean Field Game for storage in smart grids. ArXiv, 2018.

Our article:

 J.F. Bonnans, S. Hadikhanloo, L. Pfeiffer. Schauder estimates for a class of potential Mean Field Games of Controls, ArXiv, 2019.

Thank you for your attention!

