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Introduction

Mean field games (MFGs): first introduced by J.-M. Lasry and P.-L. Lions [LL06] and
M. Huang, R. Malhamé, and P. Caines in [HMC06], to study interactions among a
large population of rational players.

Main features:

Asymptotic models of N-rational and identical players,

Interaction through a mean field e�ect,

Non-cooperative games. Notion of solution: Nash equilibrium.
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Examples of applications2

Figure: Crowd motion Figure: Electrical systems

Figure: Finance Figure: Flock motion

2
Credits: evrenkalinbacak (Crowd motion) ; Viktor Yelantsev (Electrical systems) ; Sergey Nivens (Finance) ; A.G.D. Beukhof (Flock motion).
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Fixed point structure

Coupling terms Decision

Figure: Fixed point structure of the mean field game problem.
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Fixed point structure

;
(i)

;
≠ˆtu ≠ �u + H(Òu + P) = “,

u(x , T ) = g(x),

Unknowns:
Value fonction u

Coupling terms
(“, P)

(i) Dynamic programming
u
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Fixed point structure
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game problem.
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Framework and contributions

Present the generalized conditional gradient (GCG) algorithm,

Apply this algorithm to potential mean field games,

Establish a link between the GCG algorithm and the fictitious play algorithm3,

Establish convergence results: convergence in potential cost O(1/k) of the
potential cost, and in O(1/

Ô
k) of the exploitability and the variables of the

problem (distribution, congestion, price, value function and control terms).

3
Idea also developed in discrete framework for the Frank-Wolfe algorithm [GPL

+
21]: M. Geist and

al. Concave utility reinforcement learning: the mean field game viewpoint, 2021.
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Abstract framework

Consider the optimization problem

min
xœK

f (x) = f1(x) + f2(x).

Assumptions on the data:

K is a convex and compact subset of Rn of finite diameter D,

f1 is a (possibly non-smooth) convex function,

f2 a continuous di�erentiable function with L-Lipschitz gradient.
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Abstract generalized conditional gradient algorithm

Consider the mapping h : K ◊ K æ R defined by

h(x , y) = f1(y) ≠ f1(x) + ÈÒf2(x), y ≠ xÍ.

Algorithm 1 Generalized conditional gradient

Choose x̄0 œ K and choose a sequence (”k)kœN œ [0, 1].
for 0 Æ k < N do

Find xk œ arg minyœK h(x̄k , y)
Update x̄k+1 = (1 ≠ ”k)x̄k + ”kxk

end for
return x̄N .

Let x̄ = arg minxœK f (x). Following standard arguments4 we have for ”k = 2/(k + 2),

f (x̄k) ≠ f (x̄) Æ C/(k + 2).

4
[Jag13]: Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization, 2013.

Pierre Lavigne (ILB) GCG for potential MFGs January 7, 2022 13 / 50



Mean field game system

Y
______________]

______________[

(i)
;

≠ˆtu ≠ �u + H[Òu + AıP] = “,

u(x , T ) = g(x),

(ii) v = ≠Hp[Òu + AıP],

(iii)
;

ˆtm ≠ �m + Ò · (vm) = 0,

m(0, x) = m0(x),

(iv) “(x , t) = f (x , t, m(t)),

(v) P(t) = „[A[vm]](t).

Unknowns:
Value fonction u
Control v
Distribution of states m
Congestion “
Price P

(iv,v) Coupling terms
(“, P)

(ii) Decision
v

(iii) Distribution
m

(i) Dynamic programming
u

Figure: Fixed point structure of the mean field

game problem.
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Assumptions

Nature of the assumptions on the data:

m0 œ C2+–0 (Td), g œ C2+–0 (Td).

Regularity assumptions on L, f and „ and boundedness of f and „.

There exists convex maps F : [0, T ] ◊ D1(Td) and � : [0, T ] ◊ Rk æ R such that

F (t, m2) ≠ F (t, m1) =
⁄

1

0

⁄

Td
f (x , t, sm2 + (1 ≠ s)m1)(m2(x) ≠ m1(x))dxds,

„(t, z) = Òz�(t, z).
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Theorem
There existsa – œ (0, 1) such that (MFG) has a unique classical solution (m̄, v̄ , ū, “̄, P̄),
with Y

____]

____[

m̄ œ C2+–,1+–/2(Q),
v̄ œ C1+–,–(Q;Rd),
ū œ C2+–,1+–/2(Q),
“̄ œ C–(Q),
P̄ œ C–(0, T ;Rk).

a
[BHP21]: J. F. Bonnans, S. Hadikanloo, L. Pfei�er, Schauder Estimates for a Class of

Potential Mean Field Games of Controls, 2019.

Question : how to compute this solution ?

Approach:

Use the variational form of the mean field game,

Fit the framework of the GCG,

Show the convergence of the method.
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A potential mean field game

Let Bp := W 2,1,p(Q) ◊ W 1,0,Œ(Q). We define the following primal problem
Y
___]

___[

inf
(m,v)œBp

J (m, v) :=
⁄

Q
L[v ]mdxdt +

⁄ T

0

(F [m] + �[A[mv ]]) dt +
⁄

Td
gm(T )dx ,

s.t : ˆtm ≠ �m + Ò · (vm) = 0, (x , t) œ Q,
m(x , 0) = m0(x), x œ Td .

The above problem is not convex.

Using the change of variable “à la Benamou-Brenier”
w = mv we define the following convex problem

inf
(m,w)œR̃

J̃ (m, w) :=
⁄

Q
L̃[m, w ]dxdt +

⁄ T

0

(F [m] + �[Aw ]) dt +
⁄

Td
gm(T )dx , (P̃)

R̃ := {(m, w) œ Bp , ˆtm ≠ �m + Ò · w = 0, m(0) = m0, m(x , t) > 0, (x , t) œ Q}.
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Application to potential mean field games

We have the following convex problem

inf
(m,w)œR̃

J̃ (m, w) :=
⁄

Q
L̃[m, w ]dxdt +

⁄ T

0

(F [m] + �[Aw ]) dt +
⁄

Td
gm(T )dx ,

(P̃)

Define the following semi-linearization mapping h : R̃ ◊ R̃ æ R of the potential
cost,

h((m, w)¸ ˚˙ ˝
x

, (mÕ, w Õ)¸ ˚˙ ˝
y

) =
⁄

Q

!
L̃[mÕ, w Õ] ≠ L̃[m, w ]

"
dxdt +

⁄

Td
g(mÕ ≠ m)(T )dx

¸ ˚˙ ˝
f1(y)≠f1(x)

+
⁄

Q
“(mÕ ≠ m)dxdt +

⁄ T

0

ÈA[w Õ ≠ w ], PÍdt
¸ ˚˙ ˝

ÈÒf2(x),y≠xÍ

,

where “(x , t) = f (x , t, m(t)) and P(t) = „(t, Aw(t)) for any (x , t) œ Q.
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Application to potential mean field games

We have the following convex problem

inf
(m,w)œR̃

J̃ (m, w) :=
⁄

Q
L̃[m, w ]dxdt +

⁄ T

0
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x
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y
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⁄

Q

!
L̃[mÕ, w Õ] ≠ L̃[m, w ]

"
dxdt +

⁄

Td
(gmÕ ≠ gm)(T )dx

¸ ˚˙ ˝
f1(y)≠f1(x)

+
⁄

Q
(“mÕ ≠ “m)dxdt +

⁄ T

0

ÈA[w Õ], PÍ ≠ ÈA[w ], PÍdt
¸ ˚˙ ˝

ÈÒf2(x),y≠xÍ

,

= Z̃“,P(mÕ, w Õ) ≠ Z̃“,P(m, w)
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Algorithm

Algorithm 2 Generalized conditional gradient

Choose (m̄0, w̄0) œ C2+–,1+–/2(Q)◊C1+–,–(Q;Rd) with m̄0(x , t) > 0 for any (x , t) œ Q
and choose a sequence (”k)kœN œ [0, 1].
for 0 Æ k < N do

Find (mk , wk) = arg min
(m,w)œR̃ h((m̄k , w̄k), (m, w))

Update (m̄k+1, w̄k+1) = (1 ≠ ”k)(m̄k , w̄k) + ”k(mk , wk)
end for
return (m̄N , w̄N).

Using that h((m̄k , w̄k), (m, w)) = Z̃“k ,Pk (m, w) ≠ Z̃“k ,Pk (m̄k , w̄k),
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Algorithm

Algorithm 3 Generalized conditional gradient

Choose (m̄0, w̄0) œ C2+–,1+–/2(Q)◊C1+–,–(Q;Rd) with m̄0(x , t) > 0 for any (x , t) œ Q
and choose a sequence (”k)kœN œ [0, 1].
for 0 Æ k < N do

Find (mk , wk) = arg min
(m,w)œR̃ Z̃“k ,Pk (m, w)

Update (m̄k+1, w̄k+1) = (1 ≠ ”k)(m̄k , w̄k) + ”k(mk , wk)
end for
return (m̄N , w̄N).

Using that h((m̄k , w̄k), (m, w)) = Z̃“k ,Pk (m, w) ≠ Z̃“k ,Pk (m̄k , w̄k),
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Generalized conditional gradient interpretation

Figure: Illustration of the potential cost J̃ , the individual cost Z̃“,P and the exploitability ‡.
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Game theory interpretation: fictitious play

1. Given (m̄k , w̄k) compute
Pk = „(Aw̄k) and “k = f (m̄k).

2. Find uk solution to,

≠ˆtu ≠ �u + H[Òu + AıPk ] = “k ,
u(T ) = g

3. Find the associated optimal control
vk = ≠Hp[Òuk + AıPk ].

4. Find the solution mk to,

ˆtm ≠ �m + Ò · (vkm) = 0,
m(0) = m0.

5. Compute wk = mkvk and actualize
(m̄k+1, w̄k+1) =
(1 ≠ ”k)(m̄k , w̄k) + ”k(mk , wk).

1. Coupling terms
(“k , Pk)

3. Decision
vk

4. Distribution
mk

5. Learning
(m̄k+1, w̄k+1)

2. Dynamic programming
uk

Figure: Fictitious play: a fixed point approach.
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Convergence analysis

Primal gaps let (m̄, w̄) = arg min
(m,w)œR̃ J̃ (m, w),

‘k = ‘(m̄k , w̄k) = J̃ (m̄k , w̄k) ≠ J̃ (m̄, w̄),

Exploitability: largest decrease in cost that a representative agent can reach by
playing its best response, assuming that all other agents use the feedback

‡k = ‡(m̄k , w̄k) = ≠ min
(m,w)œR̃

h((m̄k , w̄k), (m, w)),

=Z̃“k ,Pk (m̄k , w̄k) ≠ min
(m,w)œR̃

Z̃“k ,Pk (m, w).

Lemma
We have that ‘k Æ ‡k .

Direct consequence of the GCG framework: visual proof.
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Convergence analysis

Figure: Illustration of the potential cost J̃ , the individual cost Z̃“,P and the exploitability ‡.
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Main result

Lemma

Frank-Wolfe learning rate : ”k = 2

k+2
implies ‘k Æ 4L0

k+2
, for some L0 > 0.

Fictitious play learning rate : ”k = 1

k+1
implies ‘k Æ ln(k+1)L1

k+1
, for some L1 > 0.

Additional convergence results, based on a quadratic growth property of the potential
cost, have been obtained. For any k œ N we denote

”m̄k = m̄k ≠ m̄, ”w̄k = w̄k ≠ w̄ , ”v̄k = v̄k ≠ v̄ ,
”mk = mk ≠ m̄, ”wk = wk ≠ w̄ , ”v̄k = vk ≠ v̄ ,
”Pk = Pk ≠ P̄, ”“k = “k ≠ “̄, ”uk = uk ≠ ū.

Theorem
There exists C > 0 such that for all k œ N, ‡k Æ C‘1/2

k and

Î”v̄kÎL2(Q;Rd )
+ Î”m̄kÎLŒ(0,T ;L2(Td ))

+ Î”w̄kÎL2(Q;Rd )

+ Î”vkÎL2(Q;Rd )
+ Î”mkÎLŒ(0,T ;L2(Td ))

+ Î”wkÎL2(Q;Rd )

+ Î”PkÎL2(0,T ;Rk )
+ Î”“kÎLŒ(Q) + Î”ukÎLŒ(Q) Æ C‘1/2

k .
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Numerical experiments

2 examples:

Congestion model,

Cournot competition model.

4 learning rules:

2 open loop learning rules:

1 Fictitious Play: ”k = 1/(k + 1),

2 Frank Wolfe: ”k = 2/(k + 2),

2 closed loop learning rules:

1 Golden-section rule,

2 Armijo like rule.

Objective of the closed loop rules: at each step k œ N, find ”k such that

”k = min
”œ[0,1]

J̃ (m̄”
k , w̄”

k ),

where (m̄”
k , w̄”

k ) = ”(mk , wk) + (1 ≠ ”)(m̄k , w̄k).
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Golden-section search

Algorithm 4 Golden-section search

a = 0 and d = 1.
for i Æ I œ N do

Set b = d ≠ (d ≠ a)/Ï and c = a + (d ≠ a)/Ï.
Find ”i = arg min”œ{a,b,c,d} J̃ (m̄”

k , w̄”
k )

if ”i = a then
Set d = b

else if ”i = b then
Set d = c

else if ”i = c then
Set a = b

else if ”i = d then
Set a = c

end if
end for
return ”i .

where Ï := (
Ô

5 + 1)/2 is the golden number.
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Golden-section search

Figure: Illustration: golden section search
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Golden-section search

Figure: Illustration: golden section search
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Golden-section search

Figure: Illustration: golden section search
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Golden-section search

Figure: Illustration: golden section search
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Armijo rule

Lemma
There exists C > 0 such that for any ” œ [0, 1], it holds:

J̃ (m̄”
k , w̄”

k ) Æ J̃ (m̄k , w̄k) ≠ ”‡k + ”2C ,

where (m̄”
k , w̄”

k ) = ”(mk , wk) + (1 ≠ ”)(m̄k , w̄k).

Algorithm 5 Quasi-Armijo-Goldstein

Choose c œ (0, 1/2] and · œ (0, 1). Initialize i = 0 and ”i = 1.
while J̃ (m̄”i

, w̄”i ) Ø J̃ (m̄, w̄) ≠ c”i‡k do
Update ”i+1 = ·”i

Update i = i + 1
end while
return ”i .

Pierre Lavigne (ILB) GCG for potential MFGs January 7, 2022 34 / 50



Numerical experiments
A congestion model („ = 0):

Figure: log(Ák) Figure: log(‡k) Figure: Learning rate ”k

A Cournot model (f = 0):

Figure: log(Ák) Figure: log(‡k) Figure: Learning rate ”k
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Congestion model

Data of the problem :

Figure: Initial measure m0 Figure: Terminal condition g

Linear congestion of the form f (x , t, m(t)) = cm(x , t) for any (x , t) œ Q.

Pierre Lavigne (ILB) GCG for potential MFGs January 7, 2022 36 / 50



Equilibrium control v̄
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Equilibrium measure m̄
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Equilibrium value function ū
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Price model

Data of the problem (terminal condition g = 0):

Figure: Initial measure m0 Figure: Reference demand D̄

Pierre Lavigne (ILB) GCG for potential MFGs January 7, 2022 40 / 50



Equilibrium prices

Pricing function P(t, D(t) + D̄(t)) = c(D(t) + D̄(t)) for any t œ [0, T ].

Figure: Equilibrium prices P Figure: Remaining demand

D1 + D̄1

Figure: Remaining demand

D2 + D̄2
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Equilibrium control v̄
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Equilibrium measure m̄
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Equilibrium value function ū
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Summary

GCG algorithm applies to potential MFGs,

It has a game theory interpretation,

Convergence in O(1/k) of the primal gaps and O(1/
Ô

k) of the exploitability and
the variables of the problem for ”k = 2/(k + 2),

Possible accelerations via line search.
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Perspectives

Line-search Investigate di�erent line-search rules and compare their
performances,

First order Apply GCG to first order MFG,

Non-convex Application to non-convex case (MFG “à la Cucker-Smale”).

Pierre Lavigne (ILB) GCG for potential MFGs January 7, 2022 47 / 50



Conclusion

Thank you for your attention.
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The stochastic individual control problem

For all ‹ œ L2

F(t, T ;Rd), we denote by (X ‹
s )sœ[0,T ] the solution to the stochastic

di�erential equation
dXs = ‹sds +

Ô
2dBs , X0 = Y .

We define the individual cost Z“,P : L2

F(0, T ;Rd) æ R,

Z“,P(‹) = E
5⁄ T

0

L(X ‹
s , s, ‹s) + ÈAı[P](X ‹

s , s), ‹sÍ + “(X ‹
s , s)ds + g(X ‹

T )
6

.

We consider the following stochastic individual control problem

inf
‹œL2

F(0,T ;Rd )

Z“,P(‹). (P“,P)
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An equivalent PDE individual control problem

Consider the mapping m : W 1,0,Œ(Q) æ W 2,1,p(Q) which associates to any
v œ W 1,0,Œ(Q) the solution to the Fokker-Planck equation

ˆtm ≠ �m + Ò · (vm) = 0, (x , t) œ Q,
m(x , 0) = m0(x), x œ Td .

We define Bp = W 2,1,p(Q) ◊ W 1,0,Œ(Q) (recall that p > d + 2 is fixed) and we define

R = {(m, v) œ Bp , ˆtm ≠ �m + Ò · (vm) = 0, m(0) = m0, (x , t) œ Q} ,

R̃ = {(m, w) œ Bp , ˆtm ≠ �m + Ò · w = 0, m(0) = m0, m(x , t) > 0, (x , t) œ Q} .
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An equivalent PDE individual control problem

We define the individual cost Z“,P : R æ R,

Z“,P(m, v) =
⁄

Q
(L[v ] + “) mdxdt +

⁄ T

0

ÈA[mv ], PÍdt +
⁄

Td
gm(T )dx .

We define the following individual control problem

inf
(m,v)œR

Z“,P(m, v). (P“,P)

We define the individual cost Z̃“,P : R̃ æ R,

Z̃“,P(m, w) =
⁄

Q

!
L̃[m, w ] + “m

"
dxdt +

⁄ T

0

ÈA[w ], PÍdt +
⁄

Td
gm(T )dx ,

where L̃ is the perspective function of L. and the following control problem

inf
(m,w)œR̃

Z̃“,P(m, w). (P̃“,P)
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An equivalent PDE individual control problem

Given v œ W 1,0,Œ(Q), we denote (X v
s )sœ[0,T ] the solution to the following stochastic

di�erential equation
dXs = v(Xs , s)ds +

Ô
2dBs , X0 = Y .

We further consider the associated control ‹v
s œ L2

F(0, T ;Rd) defined by ‹v
s = v(s, X v

s ).

Lemma
For any v œ W 1,0,Œ(Q,Rd), we have

Z“,P(‹v ) = Z“,P(m[v ], v) = Z̃“,P ¶ ‰(m[v ], v).
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An equivalent PDE individual control problem

Lemma
Let u = u[“, P] and let v = ≠Hp[Òu + AıP]. Let m = m[v ] and let (m, w) = ‰(m, v).

1 There exists – œ (0, 1), depending on “ and P, such that

v œ C1+–,–(Q;Rd), m œ C2+–,1+–/2(Q), w œ C1+–,–(Q;Rd).

2 There exists C > 0, depending only on R, such that

ÎvÎW 1,0,Œ(Q;Rd )
Æ C , ÎmÎW 2,1,p(Q) Æ C , ÎwÎW 1,0,Œ(Q;Rd )

Æ C .

3 The stochastic process (‹v
s )sœ[0,T ] is a solution to (??).

4 The pair (m, v) is a solution to (P“,P) and (m, w) is a solution to (P̃“,P).
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Game theory interpretation: exploitability

We denote (X v
s )sœ[0,T ] the solution to the following stochastic di�erential equation

dXs = v(Xs , s)ds +
Ô

2dBs , X0 = Y .

We further consider the associated control ‹v
s œ L2

F(0, T ;Rd) defined by ‹v
s = v(s, X v

s ).
Defining the individual stochastic control problem,

inf
‹œL2

F(0,T ;Rd )

Z“,P(‹) = E
5⁄ T

0

L(X ‹
s , s, ‹s) + ÈAı[P](X ‹

s , s), ‹sÍ + “(X ‹
s , s)ds + g(X ‹

T )
6

,

we have that the primal-dual gap coincides with the notion of exploitability for
v̄k = w̄k/m̄k ,

‡k = Z“k ,Pk (‹ v̄k ) ≠ inf
‹œL2

F(t,T ;Rd )

Z“k ,Pk (‹).

Exploitability: largest decrease in cost that a representative agent can reach by playing
its best response, assuming that all other agents use the feedback v̄k = w̄k/m̄k .
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