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Introduction

Mean field games (MFGs): first introduced by J.-M. Lasry and P.-L. Lions [LLO6] and
M. Huang, R. Malhamé, and P. Caines in [HMCO06], to study interactions among a
large population of rational players.

Main features:
@ Asymptotic models of N-rational and identical players,
@ Interaction through a mean field effect,

@ Non-cooperative games. Notion of solution: Nash equilibrium.
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Examples of applications?

Figure: Electrical systems

3 ‘3.1';*. ;u‘l .»

Figure: Finance Figure: Flock motion

2Credits: evrenkalinbacak (Crowd motion) ; Viktor Yelantsev (Electrical systems) ; Sergey Nivens (Finance) ; A.G.D. Beukhof (Flock motion).
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Fixed point structure
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Figure: Fixed point structure of the mean field game problem.
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Fixed point structure

{ ( {_atu — Au + H(VU + P) =7, (i) Dynamic programming

U(X7 T):g(X), / )

Coupling terms
(v, P)

Unknowns:
Value fonction u

Pierre Lavigne (ILB) GCG for potential MFGs January 7, 2022 6/50



Fixed point structure

4 (I) {—8tu — AU ‘|_ H(VU —|’ P) ==, (i) Dynamic programming
4 u(x, T) = g(x), / , \

L (i) v=—H,(Vu+ P),

Coupling terms « | (ii) Decision
(v, P) 7 ,

Unknowns:

Value fonction u

Control Vv
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Fixed point structure

( (I) {_8tu — Au + H(VU + P) =, (i) Dynamic programming
u(x, T) = g(x), /f v \
X (i) v=—H,(Vu+ P),
— A . — Coupling terms X (ii) Decision
iy {Om = Am V- (vm =0 i :
\ m(O,X) — mO(X)7
(iii) Distribution /
Unknowns:
Value fonction u
Control v
Distribution m

Pierre Lavigne (ILB) GCG for potential MFGs January 7, 2022 8/50



Fixed point structure

2/

r 0 {—8tu—Au—|—H(Vu+P) = 7,
u(x, T) = g(x),

(i) v=—H,(Vu+ P),

(i) {81_-”7 — Am+V - (vm) =0,

m(0, x) = mo(x),

(iv)  v(x,t) = f(x, m(t)),

L (V) P() = & (Jpu vx, t)m(x, 1)),

Unknowns:

Value fonction u
Control Vv
Distribution m
Congestion term  ~y
Price term P

(i) Dynamic programming

u

/-

(iv,v) Coupling terms

N

« | (ii) Decision

(v, P)

AN\

.

(iii) Distribution

m

4

4

Figure: Fixed point structure of the mean field

game problem.
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Framework and contributions

@ Present the generalized conditional gradient (GCG) algorithm,

3ldea also developed in discrete framework for the Frank-Wolfe algorithm [GPL*21]: M. Geist and
al. Concave utility reinforcement learning: the mean field game viewpoint, 2021.
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Framework and contributions

@ Present the generalized conditional gradient (GCG) algorithm,
@ Apply this algorithm to potential mean field games,
@ Establish a link between the GCG algorithm and the fictitious play algorithm?,

e Establish convergence results: convergence in potential cost O(1/k) of the
potential cost, and in O(1/v/k) of the exploitability and the variables of the
problem (distribution, congestion, price, value function and control terms).

3ldea also developed in discrete framework for the Frank-Wolfe algorithm [GPL*21]: M. Geist and
al. Concave utility reinforcement learning: the mean field game viewpoint, 2021.
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Abstract framework

Consider the optimization problem
min f(x) = fi(x) + f(x).
xeK

Assumptions on the data:
@ K is a convex and compact subset of R"” of finite diameter D,
@ f is a (possibly non-smooth) convex function,

@ f» a continuous differentiable function with L-Lipschitz gradient.
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Abstract generalized conditional gradient algorithm

Consider the mapping h: K x K — R defined by

h(x,y) = fi(y) — fi(x) + (Vh(x),y — x).

Algorithm 1 Generalized conditional gradient

Choose Xp € K and choose a sequence (d«)ken € [0, 1].
for 0 < k< N do
Find xx € argmin ., h(X«, y)
Update xx11 = (1 — 5/())_(/( + O X
end for
return Xxy.

Let X = argmin,, f(x). Following standard arguments® we have for 8, = 2/(k + 2),

f(x) — f(x) < C/(k+2).

“[Jagl3]: Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization, 2013.
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Mean field game system

( (i) {_8tU_AU+H[VU+A*P]:/Y,
u(x, T) = g(x),

(i) Dynamic programming

(i) v=—H,[Vu+ AP, / . \
(i) {&m — Am+V - (vm) =0,

\
m(va) — mO(X)a
(iv,v) Coupling terms ; (ii) Decision
(iv)  ~(x,t) = f(x,t, m(t)), oo ( ’

L) P(e) = p[Alvm]](e). \ /

Unknowns: (iii) Dis:':ibution

Value fonction u

Cc_)ntrol _ v Figure: Fixed point structure of the mean field

DIStFIbU'FIOh of states m game problem.

Congestion ol

Price P
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Nature of the assumptions on the data:

@ mp € C*'o(TY), g e C* o(TY).
@ Regularity assumptions on L, f and ¢ and boundedness of f and ¢.

@ There exists convex maps F: [0, T] x D1(T%) and ¢ : [0, T] x R — R such that
1
F(t,my) — F(t,m) = / / f(x,t,smy+ (1 — s)my)(mz2(x) — mi(x))dxds,
o JT1d

o(t,z) = V,P(t, z).
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There exists® a. € (0,1) such that (MFG) has a unique classical solution (m, v, u,?, P),

with
C2—|—o¢,1+o¢/2(Q)7

Cl—l_a’a(Q;Rd),

4 = C2+o¢,1—|—o¢/2(Q)7
ye CHQ),

. P C%(0, T;R").

([ m

?[BHP21]: J. F. Bonnans, S. Hadikanloo, L. Pfeiffer, Schauder Estimates for a Class of
Potential Mean Field Games of Controls, 2019.

Question : how to compute this solution ?

Approach:

@ Use the variational form of the mean field game,
@ Fit the framework of the GCG,

@ Show the convergence of the method.
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A potential mean field game

Let B” == W>1P(Q) x WH%>°(Q). We define the following primal problem

y

\

inf 7 (m, v) ::/L[v]mdxdt—i—/ (F[m]—|—<I>[A[mv]])dt—|—/ gm(T)dx,
Q 0 Td

(m,v)eBP

st: Om—Am+V - -(vm)= 0, (x,t) € Q,
m(x,0) = mo(x), x € T¢.

The above problem is not convex.
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A potential mean field game

Let B” == W>1P(Q) x WH%>°(Q). We define the following primal problem

y

inf 7 (m, v) ::/L[v]mdxdt+/ (F[m]—l—(I)[A[mv]])dt—i—/ gm(T)dx,
Q 0 Td

(m,v)eBP

st: Om—Am+V - -(vm)= 0, (x,t) € Q,
m(x,0) = mo(x), x € T¢.

\

The above problem is not convex. Using the change of variable “a la Benamou-Brenier”
w = mv we define the following convex problem

inf 7 (m,w) ::/Z[m, W]dxdt+/ (F[m]+‘1>[AW])dt+/ gm(T)dx, (P)
Q 0 Td

(m,W)ET:’,

R = {(mw) € B, 0:m—Am+V -w =0, m(0) = mp, m(x,t) >0, (x,t) € Q}.
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Application to potential mean field games

@ We have the following convex problem

il Ty W) = /QL[””” wldxdt + /O (F[m] + ®[Aw])dt + /T d gm(T)dXN,
(P)

o Define the following semi-linearization mapping h: R x R — R of the potential
cost,

h((m,w), (m',w')) = / (IN.[m/, w'] — L[m, W]) dxdt + / g(m' — m)(T)dx
M v Q Td

X y \ . 4

fL(y)—f (x)

—|—/ny(m/ - m)dxdt+/OT(A[W' — w], P)dt,

\ 7

(VF(x),y—x)

where vy(x, t) = f(x, t,m(t)) and P(t) = ¢(t, Aw(t)) for any (x,t) € Q.
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Application to potential mean field games

@ We have the following convex problem

inf  J(m,w) = / L[m, w]dxdt +/ (F[m] + ®[Aw]) dt —|—/ gm( T)dx,
Q 0 Td

(mw)eER
(P)
o Define the following semi-linearization mapping h: R x R — R of the potential
cost,
(e w), (' w)) = [ (L w] = Em.w]) axae + [ (gm — gm)(T)x
—— N—— 0 Td
X y N - S

fi(y)—f(x)

T /Q (ym' — ym)dxdt + / (AW], ) — (Alw], P)dt.

\ - 7

(VH(x),y—x)

:2’;’%’3(’”/7 W/) _ Z’Y,P(ma w)
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Algorithm

Algorithm 2 Generalized conditional gradient

Choose (o, wp) € C2F1T/2(Q) x Cr T2 (Q; RY) with mo(x, t) > 0 for any (x, t) € Q
and choose a sequence (dx)ken € [0, 1].
for 0 < k < N do
Find (mx, wi) = argmin(, ez h((Mk, wi), (m, w))
Update (Mit1, Wit1) = (1 — k) (e, Wic) + ok (M, wic)
end for
return (ﬁ?/\/,ﬁ//\/).

Using that h((my, wk), (m, w)) = Z-, p, (m, w) — Z., p, (M, W),
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Generalized conditional gradient interpretation

—— Domain R

Figure: lllustration of the potential cost 7, the individual cost 2%/: and the exploitability o.
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Game theory interpretation: fictitious play

1. Given (mg, wx) compute
Pk — gb(AV_Vk) and Yk = f(l’_nk)

2. Find Uy solution to, 2. Dynamic programming
—0tu — Au+ H[Vu+ A*Pe] = i, / \
u(T)= g
3. Find the associated optimal control 1. Coupling terms , | 3 Decision
Vik = —Hp[Vuk + A" Py]. (ks Po) "

4. Find the solution my to, K )

oem— Am+ YV - (vim) = 0,
m(O) = mMmo. 5. Learning 4. Distribution

(Mis1, Wict1) M

&_/

5. Compute wx = myvy and actualize
(mk+1, |7Vk+1) —
(1 - 5k)(ﬁ7k7 Wk) T 5k(mk7 Wk)'

Figure: Fictitious play: a fixed point approach.
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Convergence analysis

o Primal gaps let (m, w) = argmin . , c5 T (m, w),
€k = E(ﬁ’kv Wk) — j(mkv Wk) - j(r‘n, W)a

@ Exploitability: largest decrease in cost that a representative agent can reach by
playing its best response, assuming that all other agents use the feedback

O k :O'(ﬁ’lk,ﬁ/k) — —  min . h((ﬁvk,v_vk),(m, W)),
(mw)eER
— NWk,Pk(mka Wk) —  min 2’7kapk(m7 W)'
(mw)eER

Lemma

We have that ¢, < o.

Direct consequence of the GCG framework: visual proof.
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Convergence analysis

! —— Domain R

Figure: lllustration of the potential cost 7, the individual cost 2%/: and the exploitability o.
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Main result

Lemma

@ Frank-Wolfe learning rate : oy, = kLH implies €, < k+2, for some Lo > 0.

@ Fictitious play learning rate : dx = %ﬂ implies €, < '"(ﬁll)“, for some L; > 0.

Additional convergence results, based on a quadratic growth property of the potential
cost, have been obtained. For any k € N we denote

S = My — m, SWk = Wk — W, SV =k — v,
5mk :mk—ﬁv, 5Wk = Wk—V|_/, 5Vk = Vk—v,
5Pk :Pk—P, 5’Yk :’yk—s/, 5Uk :Uk—fl.

There exists C > 0 such that for all k € N, o < Ce,’* and
[0Vic|l 2(qre) +  [[0Mkll o0, Ti2(reyy T [[0Wk || 12(qire)
+  [[ovkll2(qirey +  [[0mklloo0, 7i2(reyy T [[OWk||12(qire)
1/2
+  [[0Pcll2,mrey 107kl () +  oullie@ < Cel.
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Numerical experiments

@ 2 examples:

e Congestion model,

e Cournot competition model.
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Numerical experiments

@ 2 examples:

e Congestion model,

e Cournot competition model.
@ 4 learning rules:

@ 2 open loop learning rules:
@ Fictitious Play: 6, = 1/(k + 1),
© Frank Wolfe: 6, =2/(k + 2),

e 2 closed loop learning rules:

@ Golden-section rule,
© Armijo like rule.

Objective of the closed loop rules: at each step k € N, find d, such that

Sk = min J(my, wy),
6€l0,1]

where (ﬁ’)i, WE) = 5(mk, Wk) -+ (]. — (5)(!77;(, Wk).
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Golden-section search

Algorithm 4 Golden-section search

a=0and d=1.

for i </ € Ndo
Set b=d—(d—a)/pand c=a+ (d — a)/e.
Find §' = arg MiNsc (2 bc.d) TJ(mS, W)

if &' = a then
Setd =0b
else if ' = b then
Setd =c
else if ' = ¢ then
Seta=0>b
else if ' = d then
Seta=rc
end if
end for
return §'.

where ¢ := (v/5 4 1)/2 is the golden number.
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Golden-section search

° ®
b

a
Q.
Il
'—I

Figure: lllustration: golden section search
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Golden-section search

° ®
b d=1

0

Figure: lllustration: golden section search
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Golden-section search

0

Figure: lllustration: golden section search
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Golden-section search

0

Figure: lllustration: golden section search
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Armijo rule

Lemma

There exists C > 0 such that for any § € [0, 1], it holds:

Fmh, wi) < J (M, wi) — dok + 6°C,

where (ﬁ’)i, W/f) = 5(mk, Wk) —+ (1 — 5)(ﬁ7k, Wk).

Algorithm 5 Quasi-Armijo-Goldstein

Choose ¢ € (0,1/2] and 7 € (0,1). Initialize i = 0 and §' = 1.
while J(m°, w%) > J(m, w) — cd'ox do
Update 6" = 7§’
Update i =i+ 1
end while
return ¢’
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Numerical experiments

A congestion model (¢ = 0):

01 —— fictitious play ~—— line-search 04 —— fictitious play —— line-search 1.01 —— fictitious play ~—— line-search
—— Frank-Wolfe — Armijo Frank-Wolfe — Armijo Frank-Wolfe —— Armijo
-2 A _7
2 0.8 1
-4+ _a
= - 0.6
w S
E =61 g\ —6 &
0.4 1
-8+ _g
0.2 1 o
—101 -10
121, . . . . . —121 . . . . . 001, . . . . .
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
iteration iteration iteration

Figure: log(ek) Figure: log(ok) Figure: Learning rate dy
A Cournot model (f = 0):

01 —— fictitious play —— line-search 01 —— fictitious play —— line-search 1.01 —— fictitious play =~ —— line-search
Frank-Wolfe — Armijo —— Frank-Wolfe — Armijo —— Frank-Wolfe —— Armijo
—2 -2
0.8
—4 - -4 1 \
5 61 3 -6 0.6 1
o) ) ~
g 3 °
—81 0.4
-10 4 -10
0.2 4
-12 =12
_14 1 T T T T T T _14 1 T T OO 1 T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
iteration iteration iteration

Figure: log(ek) Figure: log(o) Figure: Learning rate J,
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Congestion model

Data of the problem :

0.0
- —0.2
- —0.4
- —-0.6 g
- —0.8
- —1.0
- —-1.2
- —-1.4

HON W oo
mo
S 4

1.0 1.0
0.8 0.8
0.6 00 0.6
0.4 . 0.4
0.4 0.2 0.4 0.2

Statg 0.8 0.0

Styt, 0.8
te 1.0 0.0 1.0

Figure: Initial measure myg Figure: Terminal condition g

Linear congestion of the form f(x, t, m(t)) = cm(x, t) for any (x, t) € Q.
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Equilibrium measure m

Iteration :0
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Equilibrium value function u

Iteration :0

T—0.62
T—0.64
T—0.66
-—0.68
-—0.70
T—0.72
-—0.74

1.0
0.8
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Price model

Data of the problem (terminal condition g = 0):

2.0 A

1.5 A

1.01

mq

0.5 A1

|l N w ~

Demand

0.0 1

1.0

0.8

0.6

0.4 -1.0 4
0.2

Satg 08 L 00

-0.51

0.4

Figure: Initial measure mg Figure: Reference demand D
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Equilibrium prices

Pricing function P(t, D(t) + D(t)) = c(D(t) 4+ D(t)) for any t € [0, T].

1.0 — P — P 2.0 — B, — D40 201 — D, — D40,

0.8 1 ’ | l/ 1.5 1.5 A

0.6 1 |

‘ | | 1.0 1 1.01 ~

L o4 l 2 }l h ‘4 e "l 1 \J ”
£ 02 £ ) | | il | i £ > 1 \1 ‘il ’\ /

0.0 1 | 0.0 004 \

" \ll i -' Y ‘ | i AL
—~0.2 - ~0.51 “" r ’ ’ ]’ —05 4 |<H I | I '\”
—0.4
~101 -1.0
6 5‘0 160 15‘30 ) 260 25‘30 360 35‘30 6 5’0 160 léO . 260 ZéO 360 3éO (’) 5‘0 160 15‘30 ) 260 25‘30 3(’)0 35130
Figure: Equilibrium prices P Figure: Remaining demand Figure: Remaining demand
Dy + Dy D, + D,
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Equilibrium measure m

Iteration :0
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Equilibrium value function u

Iteration :0

r—0.14
T—-0.16
-—0.18
17-0.20

1.0

GCG for potential MFGs January 7, 2022 44 /50

Pierre Lavigne (ILB)



Contents

@ Conclusion

Pierre Lavigne (ILB) GCG for potential MFGs January 7, 2022 45 /50



@ GCG algorithm applies to potential MFGs,
@ It has a game theory interpretation,

e Convergence in O(1/k) of the primal gaps and O(1/vk) of the exploitability and
the variables of the problem for 6, = 2/(k + 2),

@ Possible accelerations via line search.
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Line-search Investigate different line-search rules and compare their
performances,

First order Apply GCG to first order MFG,

[T

Non-convex Application to non-convex case (MFG “a la Cucker-Smale”).
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Conclusion

Thank you for your attention.
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The stochastic individual control problem

For all v € Li(t, T;RY), we denote by (XZ).cjo.7] the solution to the stochastic

differential equation
Y.

dX, = vsds + V2dBs, Xo
We define the individual cost Z, p: L3(0, T;R?) — R,

-
Z,p(v) =E [ / L(XY 5, 08) + (A [PI(XY, 5), vs) + (XY, s)ds + g(X¥) |
0
We consider the following stochastic individual control problem

inf ZW,P(V). (P%P)

VELI%(O,T;]RC’)
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An equivalent PDE individual control problem

Consider the mapping m : W»%>(Q) — W?*"?(Q) which associates to any
v € W% (Q) the solution to the Fokker-Planck equation

oem — Am—+V - (vm) = 0, (x,t) € Q,
m(x,0) = mo(x), x € T°.

We define B? = W1P(Q) x Wh%>(Q) (recall that p > d + 2 is fixed) and we define

R ={(m,v) € B, 0:m—Am+V - (vm) =0, m(0) = mo, (x,t) € Q},
R ={(m w) e B, 0im—Am+V -w =0, m0) =mo, m(x,t) >0, (x,t) € Q}.
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An equivalent PDE individual control problem

We define the individual cost Z, p: R — R,

Z, p(m,v) = / (L[v] 4+ ~) mdxdt + / (A[mv], P)dt + / gm( T )dx.
Q 0 Td

We define the following individual control problem

inf Z V). P
(m,"[‘)ER ~,p(m, v) (P+.p)

We define the individual cost Z;%p: R — R,

-
Z, p(m,w) = / (L[m, w] 4+ ym) dxdt +/ (Alw], P)dt +/ gm(T)dx,
Q 0 Td
where L is the perspective function of L. and the following control problem

inf ‘,%’Y,P(ma W) (75’Y,P)

(m,W)E7N2
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An equivalent PDE individual control problem

Given v € WH%>(Q), we denote (X{)scpo,7] the solution to the following stochastic
differential equation

dXs = v(Xs,s)ds +V2dBs, Xo=Y.

We further consider the associated control v¥ € L2(0, T;R?) defined by v! = v(s, XY).

Lemma

For any v € Wl’O’OO(Q,Rd), we have

Z,p(v") = Zy p(m[v],v) = év,P o x(ml[v], v).
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An equivalent PDE individual control problem

Lemma

Let u=uly,P] and let v = —H,[Vu + A*P]. Let m = m[v] and let (m, w) = x(m, v).
© There exists a € (0,1), depending on v and P, such that

= Cl+a’a(Q;Rd), m e C2+a,1—|—a/2(Q)7 = Cl+a’a(Q;Rd).

© There exists C > 0, depending only on R, such that

HVHWLO@O(Q;Rd) < C, ||me2,1,p(Q) < C, Hwle,O,oo(Q;Rd) < C.

© The stochastic process (Vs )scpo, 1] iS a solution to (77).

@ The pair (m, V) is a solution to (P p) and (m, w) is a solution to (P, p).
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Game theory interpretation: exploitability

We denote (X )scp, ) the solution to the following stochastic differential equation

dX; = v(Xs, s)ds +V2dBs, Xo=Y.

We further consider the associated control v¥ € L(0, T;RY) defined by v! = v(s, XY).
Defining the individual stochastic control problem,

inf )Z%P(V):E [/ L(XS,s,vs) + (AT [PI(XY,s), vs) + (XS, s)ds + g(X7) |,

veLz(0,T;RY

we have that the primal-dual gap coincides with the notion of exploitability for
Vi = Wi/ my,

Ok = Z’Vkv’Dk(VVk) o Inf Z’Vkapk(y)'
I/EL%(t,T;]Rd)

Exploitability: largest decrease in cost that a representative agent can reach by playing
its best response, assuming that all other agents use the feedback v, = wy /my.
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